COMPUTER SYSTEMS RESEARCH
Code Writeup of your program 2009-2010

1. Your name: Chris Carey, Period: 3

2. Date of this version of your program: Third Quarter 2009

3. Project title: The Implementation of a User-Based Interface

4. Describe how your program runs as of this version.

* represents modified code

** represents new code

Project Classes:

· gloveinterface

· Main - initializes classes and runs StateManager

· StateManager - Determines which functions to run based on the state of the program

· ControllerInterface - Executes all application and mouse commands

· * UserInterface - Displays video feed and location of IR lights

· * VideoGrabber - Places frame of webcam video feed in a BufferedImage through JMF

· gloveinterface.drawingboard

· ** Curve – Object representing a connected and moveable array of drawn points

· ** DrawingBoard – Drawing application

· ** Photo – Photo object containing functions for its geometric manipulation

· gloveinterface.glove

· GloveEvent – Event class for glove commands

· GloveListener – Listener class for glove commands

· GloveInterface – Execution thread for all glove-based software operations

· LED - Object LED class that maintains ID and classification

· * LightLocaterForGlove - Locates positions of IR LEDs in the video frame

· LightTracker - Tracks LED configurations and gestures from the video frame

· gloveinterface.pen

· Calibrator - Calibrates the pen interface boundaries

· LightLocaterForPen – Locates positions of IR LEDs in the video frame

· ** PenEvent – Event class for pen commands

· ** PenInterface – Listener class for pen commands

· gloveinterface.photo

· Photo - A photo object that contains functions for its geometric manipulation

· PhotoApplication – Photo manipulation application for tests and demonstrations

· PhotoApplicationController – Controls PhotoApplication from commands

· PhotoTask – Task class for testing interface through command completion in PhotoApplication

· DataCollector – Exports cursor, photo, and viewpoint space-time data to a CSV file

· gloveinterface.util

· Button – GUI class for on-screen button

· Slider – GUI class for on-screen slider/scrollbar

· Point3D – 3D extension of java.awt.geom.Point2D

Brief Source Code of New Important Functions

Calibrator – calibrate() – sets up points of calibration and full screen calibration window

public void calibrate()
{

calibrating = true;

device.setFullScreenWindow(calibrationFrame);

fullScreenBounds = calibrationFrame.getBounds();

int width = (int)fullScreenBounds.getWidth();

int height = (int)fullScreenBounds.getHeight();

calibrationPoints = new Point[]{new Point((int)(width * BUFFER),

 (int)(height * BUFFER)),

 new Point((int)(width * (1 - BUFFER)),

 (int)(height * BUFFER)),

 new Point((int)(width * BUFFER),

 (int)(height * (1 - BUFFER))),

 new Point((int)(width * (1 - BUFFER)),

 (int)(height * (1 - BUFFER)))};

repaint();

}

Calibrator – determineBounds()- creates rectangular bounds within video frame based on averages of four points of calibration

private void determineBounds()
{

Point[] corners = calibrator.getCalibratedPoints();

double x = (double)(corners[0].getX() + corners[2].getX()) / 2;

double y = (double)(corners[0].getY() + corners[1].getY()) / 2;

double w = (double)(corners[1].getX() + corners[3].getX()) / 2 - x;

double h = (double)(corners[2].getY() + corners[3].getY()) / 2 - y;

bounds = new Rectangle2D.Double(ui.grabber.MAXX - x, y, -w, h);

}

Curve – addPoint() – adds 2D point to collection of points representing the Curve

public void addPoint(float x, float y)
{

Point2D p1 = new Point2D.Float(x, y);

Point2D p2 = (points.size() == 0) ? null : points.getLast();

if(points.size() == 0 ||

 Point2D.distance(p1.getX(), p1.getY(),

 p2.getX(), p2.getY()) > MIN_POINT_DIST)
{

points.addLast(p1);

}

}

Curve – draw() – draws collection of points representing the Curve

public void draw(GL gl)
{

gl.glColor3f(red, green, blue);

gl.glLineWidth(line_width);

gl.glBegin(GL.GL_LINES);

if(points.size() > 1)
{

for(int i = 1; i < points.size(); i++)
{

gl.glVertex2f((float)points.get(i-1).getX(),

 (float)points.get(i-1).getY());

gl.glVertex2f((float)points.get(i).getX(),

 (float)points.get(i).getY());

}

}

gl.glEnd();

}

Note:

All LED detection and tracking for the pen interface is borrowed from LED detection/tracking from the glove interface, but without features designed to detect and track multiple LEDs. Set up of the pen interface is very similar to the glove interface. These features have been omitted from this code write-up.

Also omitted from this code write-up is the initialization of the Java OpenGL DrawingBoard application.

