
Developing a Versatile Audio Synthesizer
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Victor Shepardson

June 7, 2010

Abstract

A software audio synthesizer is being implemented in C++, ca-
pable of taking musical and nonmusical input information and using
additive and FM methods of synthesis to achieve rich spectra, vibrato,
tremolo, and smooth pitch change effects.

Keywords: additive synthesis, FM synthesis, digital oscillator

1 Introduction

Electronic sound synthesis has been of interest to musicians, electrical engi-
neers and computer scientists for as long as it has been practical. Since the
1970s, synthesizers have evolved from primitive analog machines to sophisti-
cated computer programs. Today, methods such as additive synthesis using
Fourier transforms, sampling, physical modeling, frequency modulation and
phase distortion can be implemented or emulated using software. The goal of
this project is to create an easy-to-use piece of software for exploring multiple
methods of sound synthesis using digital oscillators.

2 Background

Two methods are particularly relevant to this project: additive synthesisa
and FM synthesis.

1



2.1 Additive Synthesis

All periodic functions can be decomposed into sine waves; an audio signal
which behaves periodically over long enough time domains, therefore, can
be represented by a collection of sine waves with different phase, frequency
and amplitude called a spectrum (Moore). Additive synthesis exploits this
fact to create audio signals by summing together sine waves or by using
Fourier Transforms to convert spectra to audio signals. One implementation
of additive synthesis–the one used in this project–is to use multiple digital
oscillators to generate waveforms at different frequencies and superimpose
them.

2.2 FM Synthesis

Frequency Modulation (FM) synthesis can produce a rich spectrum from just
one tone by using it to modulate the the frequency of a second oscillator.
This is the same method used to for radio transmission (where the carrier
frequency is above the audio band) and vibrato effects (where the modulat-
ing frequency is below the audio band). In FM synthesis, the carrier and
modulating frequencies are both in the audio band; the result is an output
signal which contains the carrier frequency as well as many audible sideband
frequencies. By varying the harmonic relationship between the modulating
frequency and carrier frequency, and the amplitude of the modulating sig-
nal, output signals which are spectrally rich and dynamic over time can be
produced (Chowning).

3 Development

The purpose of this project is to produce software of some creative value.
The final program should be capable of producing a wide variety of sounds
given musical and/or non musical input, and should be easy to manipulate
for a user familiar with some of the underlying theory.

3.1 Preliminary Versions

Previous versions were implemented in Python. Early versions rely on hard-
coding in values and sequencing statements within the program as methods of
input. A later version uses a text based UI to allow external control through

2



Figure 1: Waveforms produced by additive synthesis

a terminal. The versions implemented in Python rely on frequency, envelope
and waveform functions defined in the code. Frequency functions take a time
argument and return a frequency in Hz. Envelope functions also take a time
argument, and return a scalar amplitude. Waveform functions are defined
using logic, arithmetic, and/or trigonometric functions; they take a phase
argument between 0 and 1 and return a signal amplitude between -1 and 1.
In the body of the program, a loop over time increments the phase param-
eter based on the instantaneous frequency returned by a frequency function
and resets it when it exceeds 1. At each time step, waveform functions are
called with phase parameters; the returned values are multiplied by envelope
functions, and the result is stored in an array. Envelope shapes are visible in
Figure 2. Computations use floating point values close to 0; the final audio
signal is normalized to a maximum amplitude of 1, then converted to 32-bit
signed integers and written to a WAV file. The file can then be played back
by an separate media player or audio processing program. Figure 1 shows
waveforms produced by an early version.

Later Python versions also have notation functions, capable of generating
frequency and envelope functions. Musical information can be input as a
string of notation and a few envelope parameters; corresponding frequency
and envelope functions are generated and can be used together to synthezise
simple chords and melodies.

3



Figure 2: Audio output over several seconds

3.2 Current Version

The current version was built from the ground up in C++. The basic method
of synthesis is the same, with one key difference. Waveforms functions are
sampled at a rate equal to twice the audio sample rate for a tone at 20 Hz,
the low end of human hearing, and stored in memory. This trades a relatively
small amount of memory for a drastic speed increase: expensive waveform
functions are called only once, not at every timestep.

The primary difference between this version and older versions is its mod-
ular structure. Rather than using a collection of functions which must be
stitched together in the body of the program, this version uses a collection of
synthesizer element objects, instances of which can be created, altered and
connected using a graphic interface. All elements inherit from an abstract
class Element; this allows the main loop to polymorphically treat every type
of Element equivalently, making it easy to introduce new varieties of Ele-
ment. An Element has one output and some number of inputs (pointers to
the outputs of other elements) as well as some number of constant parame-
ters. Element has a private virtual function compute() which is defined by
every subclass; compute() is some function of the Element’s input values.
Elements also have step() and update() functions, which call compute and
store the returned value, and set the Element’s output to the stored value,
respectively. Elements can be linked together by setting the inputs Elements
to the outputs of other Elements. A few basic Elements are: Oscillator,
Constant, and Mix Sum.

4



3.3 Oscillator

Oscillators have a waveform parameter (a pointer to a block of memory
containing one of the discrete waveforms mentioned above), an amplitude
input, and a frequency input. They also store their own phase parameter.
Oscillator::compute() increments the phase parameter based on the audio
sample rate and the value appearing at its frequency input and converts the
current value of phase to a index in the array pointed to by its waveform
parameter. It returns the value of the waveform at that index multiplied by
the value appearing at the amplitude input.

3.4 Constant

Constants are a simple Element with no inputs and a single value parameter.
Constant::compute() merely returns the value of its parameter.

3.5 Mixers

Mix Sums have a variable number of inputs, specified at creation, and a gain
parameter. Mix Sum::compute() returns the sum of the values at the inputs,
multiplied by the gain.

3.6 Synthesis using Elements

By creating and linking Elements, additive synthesis and FM synthesis can
be simply implemented. Figure 3 and Figure 4 show a few constructions.

3.7 More Elements

Other Elements include gain stages and Notation Elements. Elements which
extend the abstract Notation class take as input a string of musical notation
and various paramters. Pitch::compute() produces frequency in Hz based on
notation, while Envelope::compute() produces an amplitude based on nota-
tion and ADSR shape parameters. Elements to be implemented in the future
could include noise generators, bandpass filters, clipping, compression, delay,
and reverb effects, to name a few. The only restrictions on Element behavior
are that they must operate with constant paramters, floating point inputs,
and no look ahead on signals they are processing, and must produce a single
floating point output.

5



Figure 3: Simple additive synthesis

Figure 4: Simple FM synthesis

6



Figure 5: Interface

3.8 GUI

A graphic interface was implementing using the Gtk+ library with gtkmm
wrapper for C++. Elements appear in a list, with collapsible sublists of
parameters and inputs which can be manipulated via text fields and buttons.
A dropdown menu contains options to generate audio, and write it to a
WAVE file. The interface also enables storage of synthesizer configurations
which can be loaded later or appended to other configurations.

4 Testing

Testing has been primarily by ear. This has been sufficient to confirm that
the correct audio is being produced. To a smaller extent, visual and spectral
analysis of output has been done using Audacity. When debugging file write,
Okteta was used to examine file headers. The Python time module was used
for some speed testing in Python versions; speed testing for C++ versions has

7



thus far used the bash time command. GUI testing consists of manipulating
it manually to see where and how it breaks. Elements and their interactions
have all been tested with statements in main(); the current version produces
audio as expected. In order to test FM implementation, a bell like tone and
a sweep of the modulating frequency were generated.

5 Extensions

Potential for expansion into other methods of synthesis is vast, as indicated
above. With the right Elements, distortion, subtractive and even spectral
synthesis could be implemented. Also intriguing is the possibility of synthesis
and audio playback in real time.

6 Conclusion

The goal was to produce a creatively useful piece of software. At present, a
GUI can be operated by anyone with knowledge of a few bugs and defects
to produce audio segments with variety of timbres. As a compositional tool,
it is weak, but provides detailed control over sounds. Used in tandem with
audio processing programs which provide pitch shifting, time stretching and
more robust sequencing, it could be used to creative effect.

References

[1] Chowning, J., ”The Synthesis of Complex Audio Spectra by Means
of Frequency Modulation”. Journal of the Audio Engineering Society
21(7), pp. 526-534, 1973.

[2] Miranda, E. R., ”At the Crossroads of Evolutionary Computation and
Music: Self-Programming Synthesizers, Swarm Orchestras and the Ori-
gins of Melody”, Evolutionary Computation 12(2) pp. 137-158, 2004.

[3] Moore, R., Elements of Computer Music, Prentice Hall, Englewood
Cliffs, NJ, 1990.

[4] Pachet, F., ”Description-Based Design of Melodies”, Computer Music
Journal 33(4), pp. 56-68, 2009.

8



[5] Thielemann, H., ”Untangling Phase and Time in Monophonic Sounds”.
arXiv:0911.5171v1, 26 Nov 2009.

[6] Valsamakis, N. and Miranda, E. R., ”Iterative sound synthesis by means
of cross-coupled digital oscillators”, Digital Creativity 16(2), pp. 79-92,
2005.

[7] Valsamakis, N. and Miranda, E. R., ”Extended waveform segment syn-
thesis, a nonstandard synthesis model for microsound composition”,
Proceedings of Sound and Music Computing 05, Salerno (Italy), 2005.

[8] Martins, J. M., Pereira, F., Miranda, E.R., Cardoso, A., ”Enhancing
Sound Design With Conceptual Blending of Sound Descriptors”, Euro-
pean Conference on Case-Based Reasoning Technical Report 142-04, pp.
243-255, Universidad Complutense de Madrid (Spain).

9


