
Developing a Versatile Audio Synthesizer
Victor Shepardson

Computer Systems Lab 2009-2010
Abstract

Background

Development
A software audio synthesizer is being implemented in C++,
capable of taking musical and non musical input information and
using additive and FM methods of synthesis to achieve a variety
of timbres, vibrato, tremolo, and smooth pitch change effects.

Fig 2: signals on a longer time scale

Fig 1: waveforms generated using additive synthesis

Fig 3: FM implementation

Results and Conclusions

Electronic sound synthesis has been of interest to musicians,
electrical engineers and computer scientists for as long as it has
been practical. The goal of this project is to create an easy-to-
use piece of software for exploring multiple methods of sound
synthesis using digital oscillators.

Additive Synthesis
An audio signal can be represented by a collection of sine

waves with different phase, frequency and amplitude called a
spectrum (Moore). Additive synthesis creates audio signals by
generating and superimposing waveforms. Each wave is cheap
to compute in a digital system, but a separate oscillator is
needed for every frequency; for sounds with rich spectra, additive
synthesis becomes expensive and tedious to set up.

FM Synthesis
 Frequency Modulation synthesis uses one signal to modulate
the the frequency of another, producing an harmonically complex
signal for the cost of just two oscillators. In FM synthesis, the
carrier and modulating frequencies are both in the audio band;
the result is an output signal which contains the carrier frequency
as well as many audible sideband frequencies.

Modular Synthesizer
 The current version was built from the ground up in C++. The
basic method of synthesis is the same, but trades a relatively small
amount of memory use for a drastic speed increase by storing
discrete waveforms and reading from them during synthesis.
Rather than using a collection of functions which must be stitched
together in the body of the program, this version uses a collection
of synthesizer element objects, instances of which can be created,
altered and connected to produce audio.

These objects all inherit from an abstract class Element; Each
Element has one output and some number of inputs as well as
some number of constant parameters. Elements can be linked
together by setting the inputs Elements to the outputs of other
Elements. A few basic Elements are: Oscillator, Constant, and
Mix_Sum.

Oscillator
Takes amplitude and frequency

inputs and wave parameter, outputs
waveform.
Constant

Outputs a stored parameter value.
Mix_Sum

Takes a variable number of input
signals, outputs their sum multiplied by a
gain parameter.
Partial

Outputs an input value multiplied by
a gain parameter.
Pitch

Takes a string containing notation
and outputs frequency in Hz.
Envelope

Takes notation string and various
shape parameters, outputs amplitude.

 Testing has been primarily by ear. This has been sufficient to
confirm that the correct audio is being produced. Speed testing
was difficult to implement in Python versions without impacting
performance; testing C++ versus Python versions has not been
attempted rigorously, however, the newest version appears
significantly faster and produces audio as expected.

Testing

GUI
A graphical interface was created

using Gtk and gtkmm. It enables
creation and linking of Elements,
setting of parameters, running the
synthesizer, writing output to WAVE
files, and saving and loading
synthesizer configurations.

Elements appear in a list of
collapsible blocks of text fields and
buttons. Fig 4: Interface

audacity.sourceforge.net

Elements can be used to
implement additive and FM
synthesis; the creation of filter
elements could enable
subtractive synthesis. Though the
sequential nature of signal flow
through elements creates
artifacts, oversampling can
reduce them arbitrarily.

The synthesizer produces sound as intended, in a fraction of
real time. The interface is sufficient to implement FM patches and
input simple musical notation. The modular synthesizer could be
expanded to implement subtractive, spectral, even physical
modeling synthesis by writing new Elements. As a creative tool, it
is weak for composition but provides detailed control over small
sounds which can be pitch shifted, time stretched and sequenced
by other programs.

	Slide 1

