
Developing an Audio Synthesizer
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Victor Shepardson

January 22, 2010

Abstract

A software audio synthesizer is being implemented in Python, ca-
pable of taking musical and nonmusical input information and using
additive and FM methods of synthesis to achieve rich spectra, vibrato,
tremolo, and smooth pitch change effects.

Keywords: additive synthesis, FM synthesis, digital oscillator

1 Introduction

Electronic sound synthesis has been of interest to musicians, electrical en-
gineers and computer scientists for as long as it has been practical. Since
the 1970s, synthesizers have evolved from primitive analog machines to so-
phisticated computer programs. Today, methods such as additive synthesis
utilizing Fourier transforms, sampling, granular synthesis, physical model-
ing, and FM synthesis can be implemented or emulated using software. The
goal of this project is to create an easy-to-use piece of software for exploring
multiple methods of sound synthesis using digital oscillators.

2 Background

Three methods are particularly relevant to this project: additive synthesis,
FM synthesis, and synthesis by cross-coupled oscillators.

1



Figure 1: Waveforms produced by additive synthesis

2.1 Additive Synthesis

All periodic functions can be decomposed into sine waves; an audio signal
which behaves periodically over long enough time domains, therefore, can be
represented by a collection of sine waves with different phase, frequency and
amplitude called a spectrum (Moore). Additive synthesis exploits this fact
to create audio signals by summing together sine waves or by using Fourier
Transforms to turn spectra in audio signals. One implementation of additive
synthesis–the one used in this project–is to use multiple digital oscillators to
generate harmonic tones, and to sum their outputs.

2.2 FM Synthesis

Frequency Modulation (FM) synthesis can produce a rich spectrum from just
one tone by using it to modulate the the frequency of a second oscillator.
This is the same method used to for radio transmission (where the carrier
frequency is very high) and vibrato effects (where the modulating frequency
is very low. In FM synthesis, the carrier and modulating frequencies are both
in the audio band; the result is an output signal which contains the carrier
frequency as well as many sideband frequencies. By varying the harmonic
relationship between the modulating frequency and carrier frequency, and
the amplitude of the modulating signal, output signals which are spectrally
rich and dynamic over time can be produced (Chowning).

2



2.3 Cross Coupled Oscillators

In the case of cross coupled oscillators, two oscillators are linked together, the
output of each modulating either the amplitude or frequency of the other.
This can produce many kinds of temporally varying spectra, from insect-like
buzzing sounds to running water to unpredictably shifting noise (Miranda).

3 Development

The purpose of this project is to produce software of some creative value.
The final program should be capable of producing a wide variety of sounds
given either musical or non musical input, and should be easy to manipulate
for a user familiar with some of the underlying theory.

All versions have been implemented in Python. Early versions relied
on hardcoding in values and sequencing statements within the program as
methods of input. A current version uses a text based UI to allow external
control through a terminal. A final version will consist of a GUI allowing the
creation and interconnection of several elements: oscillators, waveforms, am-
plitude/frequency functions, mixing blocks, and note matrices. Oscillators
repeat waveforms periodically given frequency inputs, and then apply ampli-
tude inputs. Mixing blocks can take two or more input signals and a control
signal and output some function of those signals, for example, an average of
two inputs weighted by the control signal, or one input scaled by a control
signal and added to a second input. Note matrices are representations of
musical notation which can be used to generate functions. Using a simple
notation developed for this project, a user can input musical information; a
note matrix can then produce piecewise frequency functions corresponding
to the specified pitches, and piecewise amplitude functions corresponding to
information about envelope shape and note durations.

Any number of oscillators can be created, allowing additive synthesis by
the addition of pure tones, or implicitly by the use of different waveforms.
Sub-audio band frequency and amplitude functions can create vibrato and
tremolo effects; note matrices allow notes to be played legato or staccato, or
to swell in or fade out. Envelope shapes are visible in Figure 2. By linking the
outputs of oscillators to the frequency or amplitude inputs of other oscillators
FM and AM can be implemented; Figure 3 shows an implementation of FM
synthesis for constant carrier and modulating frequencies.

3



Figure 2: Audio output over several seconds

Figure 3: Simple FM synthesis

Once a system of these interconnected elements has been constructed, the
user can choose to ”run” it, which will loop over a specified time duration
and write the output of a specified mixing block to a WAV file. The program
computes using floating point values close to 0; the final audio signal is
normalized to a maximum amplitude of 1, then converted to 32-bit signed
integers. Audio is represented using Pulse Code Modulation (PCM) and is
uncompressed. The file can then be played back by an separate media player
or audio processing program.

4



4 Testing

Testing has been primarily by ear. This has been sufficient to confirm that
the correct audio is being produced. To a smaller extent, visual and spec-
tral analysis of output has been done using Audacity. When debugging file
write, Okteta was used to examine file headers. Time testing has been done
using Python’s time module to compare complexity of input and operations
to runtime; however, the insertion of timing statements into loops has a sig-
nificant impact on performance, making it difficult to determine the relative
time consumption of different processes. It appears, however, that oscillators
and note matrices account for similar proportions of the total runtime, and
that normalization and file write make a smaller but significant contribution.
Overall, the program runs in about half of the audio duration for a single
oscillator and a note matrix generating frequency and amplitude functions.
Currently, sound is not produced in real time but is written to a file.

5 Results

The features described have been implemented successfully, with the excep-
tion of GUI, mixing blocks, and feedback from oscillator outputs to other
elements; additive synthesis and note matrices are operational, but FM and
cross coupled oscillators are not.

6 Conclusion

The goal was to produce a creatively useful piece of software. At present,
the synthesizer is usable by the author, and can produce music in a range of
timbres.

References

[1] Chowning, J., ”The Synthesis of Complex Audio Spectra by Means
of Frequency Modulation”. Journal of the Audio Engineering Society
21(7), pp. 526-534, 1973.

5



[2] Miranda, E. R., ”At the Crossroads of Evolutionary Computation and
Music: Self-Programming Synthesizers, Swarm Orchestras and the Ori-
gins of Melody”, Evolutionary Computation 12(2) pp. 137-158, 2004.

[3] Moore, R., Elements of Computer Music, Prentice Hall, Englewood
Cliffs, NJ, 1990.

[4] Pachet, F., ”Description-Based Design of Melodies”, Computer Music
Journal 33(4), pp. 56-68, 2009.

[5] Valsamakis, N. and Miranda, E. R., ”Iterative sound synthesis by means
of cross-coupled digital oscillators”, Digital Creativity 16(2), pp. 79-92,
2005.

[6] Valsamakis, N. and Miranda, E. R., ”Extended waveform segment syn-
thesis, a nonstandard synthesis model for microsound composition”,
Proceedings of Sound and Music Computing 05, Salerno (Italy), 2005.

6


