
The Implementation of a Glove-Based User Interface

Chris Carey

April 8, 2010

Abstract

Multi-touch interfaces have a strong advantage over
the standard mouse interface because their multiple
points of input can simplify the execution of certain
complex commands. However, the requirement for
the user to physically touch the screen remains a dis-
advantage. A glove-based interface can provide the
utility of a multi-touch interface without the prox-
imity restriction. This project resulted in the im-
plementation of a glove-based user interface using a
system of battery-powered infrared LED gloves and
a webcam modified to receive infrared light. LED
detection and gesture recognition software was writ-
ten to allow the user to execute several cursor-based
commands in a custom photo manipulation applica-
tion using the glove interface. The completion of var-
ious tasks performed in this photo application using
single-handed glove commands, double-handed glove
commands, and standard mouse commands was eval-
uated. The single-handed glove commands which
matched the complexity of the mouse commands took
more time to execute, while the double-handed glove
commands matched and exceeded the speed at which
the corresponding mouse commands were executed.
This indicates that a focus on command simplifica-
tion is necessary in order to render the glove inter-
face more efficient than the mouse interface. Devel-
oping gestural commands that take advantage of the
glove interface’s multiple points of input is key, and
in various applications, would provide for a more effi-
cient and natural human-computer interaction expe-
rience.

1 Introduction

1.1 Purpose

The purpose of this project is to explore the glove-
based user interface, an emerging interface allowing
for gestural commands that are not restricted to a 2D
surface. The commands in this project are performed
in a 2D plane in 3D space and provide the gestural
utility of multi-touch, but without the restriction of
physically touching a surface.

1.2 Scope

The goal of implementing a glove-based user inter-
face is to determine where its advantages and disad-
vantages lie. A focus on task completion is necessary
to evaluate the effectiveness of such an interface [1],
and it must be allow for the evaluation of gestures
relevant to controlling various applications such as
software for geo-spatial imaging, 3D modeling, infor-
mation visualization, and presentations.

1.3 Background

As the tools and technologies for building alterna-
tive user interfaces have become more readily avail-
able, alternatives to button and mouse interfaces have
emerged. Multi-touch interfaces have been imple-
mented as early as the mid 1980s [2], and have grown
in usage both independently and commercially over
the past few years as a result of improved accessibil-
ity to the required technology [3]. Recent advances
in infrared-based multi-touch technologies have been
moving towards reducing the need for the user to
physically touch the screen, by instead allowing them

1



to hover over the screen [4]. A glove-based user inter-
face, based on nearly identical IR LED technology,
would eliminate this restriction all together. And
though the idea of a glove-based user interface dates
back to the beginnings of virtual reality [5], with
proven applications in IR LED sensing now available
in todays popular consumer electronics provide the
glove-based interface with the potential for wider us-
age.

2 Implementation

2.1 Hardware Implementation

This research project was written in Java using the
Java Media Framework and was tested on an HP
Pavilion Laptop with a 2.1 GHz processor and 2.75
usable RAM running 32-bit Windows 7 Professional.

A modified Logitech USB webcam is used to
provide a live 320 x 240 resolution video feed of
infrared light. Its internal IR-blocking filter was
removed and a visible-light blocking filter was
externally installed, in order to ensure that only IR
light is received by the webcam. The brightness and
contrast of the video feed was set to ideal values
using the webcams driver software.

The user controls the interface with two wire-
less gloves. Each glove contains three 950nm IR
LEDs located on tips of the thumb, pointer finger,
and middle finger, and are powered by three 1.5V
AAA batteries. The circuits have an on/off switch
and are sewn into the fabric of the glove at various
points.

Fig. 1 - IR LED Gloves

2.2 Language and Structure

This research project is written in Java using the Java
Media Framework in an effort to make the software
more accessible and more efficient. A modular archi-
tectural framework is utilized in order to add recog-
nizable gestures more easily.

3 Procedure

3.1 LED Detection

Each captured video frame is evaluated through a
process of binary rasterization each pixel is marked
as either above or below a certain brightness value.
The optimal threshold value is automatically deter-
mined by creating a histogram of the pixel brightness
values and choosing a value past the brightness of
the peak histogram frequency level [6]. Fig. 2 shows
a histogram in which the optimal threshold value is
represented by the vertical orange line.

Using brightness as a representation of mass,
each blob of bright pixels that meets a predeter-
mined size and aspect ratio requirement is evaluated
by splitting the blob with the diagonals of its
bounding-box and determining if the pixels are
equally distributed in each quadrant, indicating a
circular shape. If the pixels are unequally distributed
in a manner that indicates two overlapping LEDs,
the blob is divided along the appropriate midpoint
division line and the centers of mass of the two
halves are calculated.

If it is determined that this unequally distributed
blob represents more than two overlapped LEDs, the
Circle Hough Transform algorithm is run on the blob
to locate the centers of the multiple circles within
the blob.

2



Fig. 2 - Histogram of Pixel Brightness Values with

Optimal Threshold

3.2 LED Tracking

All LEDs detected in the video frame are matched to
corresponding LED objects, and receive a group (left
or right) and an ID (pointer, clicker, or auxiliary)
classification to uniquely identify them. Tracked
LED objects are created or deleted each time step
to match the number of detected LEDs. The user is
required to display either three or six LEDs on-screen
for initial LED classification. If a new LED later
appears on-screen, it is matched with the group it
is closest to without exceeding the group limit, and
receives the appropriate remaining ID.

Groups and IDs are nested within brackets so
that when two LEDs combine to form a single LED,
the group and ID of both previously separated LEDs
are preserved and can be re-distributed to them
when the combined LED separates. For example,
consider the pinch gesture:

Fig. 3 - Nested LED Classifications

Fig. 4 - Diagonal Splitting of Two Overlapped LEDs

The depth of nesting in the new LED allows it
to be identified as actually representing two com-
bined LEDs, whose group and ID information has
been preserved. This allows for the management of
multiple LED overlaps without loss of data.

However, occasionally LED combinations, sepa-
rations, entrances, and exits occur more quickly
than what the application can handle, leading to
the misclassification of these LEDs. Therefore, the
LED groups and IDs are overridden at each time
step depending on the number of LEDs being used
on-screen, which is found not by counting the LEDs
on-screen, but by finding the total sum of their
nesting depths. From this, the application forces
the LEDs to receive groups and IDs based on their
positions on-screen. Though this requires the user to
perform gestural commands within these parameters,
it ensures proper LED tracking.

Fig. 5 - Gestural Command Parameters

3



3.3 Photo Manipulation Application

A simple photo manipulation application was created
for testing and demonstration purposes, in which the
user can drag, rescale, and rotate photos using both
the mouse and glove interfaces. The Java-standard
AffineTransform class is used to perform geometric
transformations on a photo and convert on-screen co-
ordinates to points in the photo’s transformed coor-
dinate space. The viewpoint perspective at which
the user views the photos can also be controlled by
panning or zooming. The AffineTransform class also
handles transformations between the window coordi-
nate space and the applications transformed coordi-
nate space.

3.4 Gesture Recognition and Com-
mand Execution

3.4.1 Photo Manipulation Commands

Cursor Control The cursors are positioned pro-
portionally to the centers of the LEDs in the video
frame. A two-finger pinch is executed by bringing
two LEDs in close proximity of each other. A three-
finger grab is executed by bringing three LEDs close
together.

Photo Drag A photo is dragged by dragging with
a two-finger pinch anywhere on the image except the
marked corners.

Photo Rescale A photo is rescaled with a dou-
ble two-finger pinch gesture by dragging two cursors
anywhere on the photo and moving them together
or apart. A photo is also rescaled by dragging any
of the photo’s marked corners towards or away from
the center to decrease or increase the photo’s size re-
spectively.

Photo Rotate A photo is rotated with a double
two-finger gesture by dragging two cursors anywhere
on the photo and rotating them around their mid-
point. A photo is also rotated by dragging any of the
photo’s corners and rotating it around the photo’s
center point.

3.4.2 Application Viewpoint Commands

Viewpoint Pan The application viewpoint is
panned horizontally and/or vertically by dragging
anywhere on the screen with a three-finger grab. The
viewpoint can also be panned using the on-screen
scrollbars.

Viewpoint Zoom The zoom level of the applica-
tion viewpoint is controlled with a double three-finger

4



grab gesture by dragging two cursors anywhere in
the application window and moving them together
or apart. The zoom level is also controlled by the left
on-screen scrollbar.

4 Experiment

The glove interface was tested through the perfor-
mance of a series of tasks. These tasks fall into
two categories: (1) photo tasks, and (2) viewpoint
tasks. In a photo task, a photo is placed on-screen
with an initial position and orientation. A faded-out
copy of that photo is placed on-screen in a different
position and orientation. To complete the task, the
user must drag, rescale, and/or rotate the photo so
that it matches its faded-out copy within a certain
degree of accuracy (Fig. 6). In a viewpoint task, the
application scrollbars are set to predefined initial
positions, and green rectangles appear on-screen
along the scrollbars. To complete the task, the user
must pan and/or zoom the applications viewpoint
so that the scrollbar sliders fit inside the green
rectangles along their scrollbar tracks (Fig. 7).

Fig. 6 - Photo Task Completion

Fig. 7 - Viewpoint Task Completion

During the completion of a task, the following data is
collected and exported to a CSV (Comma-Separated
Value) each time step:

• cursor x- and y-coordinates

• photo x- and y-coordinates

• photo angle and scale values

• application viewpoint pan and zoom values

The tasks were performed by the projects developer
using both the mouse and glove interfaces. An effort
was made to perform the tasks as naturally as pos-
sible erratic or unrepresentative task performances
were not used for analysis. Each task was performed
eleven times in succession with each interface. To
eliminate outliers, only the middle five trials based
upon total completion time were chosen for analysis.
The tasks were performed in a seated position using
the users dominant hand when applicable.

The following photo task was performed using
the mouse interface, and the glove interface with one
hand:

• Task #1: Drag a photo 500 pixels from right to
left

The following photo tasks were performed using the
mouse interface, the glove interface with one hand,
and the glove interface with two hands:

• Task #2: Rescale a photo from 50% to 150% of
its original size

• Task #3: Rotate a photo 3.0 radians clockwise

The following viewpoint tasks were performed us-
ing the mouse interface, and the glove interface with
one hand:

• Task #4: Pan left 1000 pixels

• Task #5: Pan right 1000 pixels

• Task #6: Pan up 600 pixels

• Task #7: Pan down 600 pixels

• Task #8: Pan up 600 pixels and left 1000 pixels

• Task #9: Pan down 600 pixels and right 1000
pixels

The following viewpoint task was performed using
the mouse interface, and the glove interface with two
hands:

• Task #10: Zoom in from 75% zoom to 150%
zoom

5



To begin the task, the user must click on the task
start button at the bottom of the application.
The command acquisition time (or command
activation time) is defined as the time between the be-
ginning of the task and the first use of the command.
The command manipulation time (or command
execution time) is defined as the time between the
first use of the command and the termination of the
command. The photo drag, rescale, and rotate tasks
and the viewpoint zoom task were only performed in
one direction because both the command acquisition
and manipulation methods are the same regardless of
direction, and therefore would achieve similar results.

The viewpoint horizontal and vertical pan tasks
were performed in two directions because the lo-
cation command acquisition is different in each
case. Using the mouse interface, the user must first
move the mouse to the scrollbar slider, which is
closer to the task start button in Task #5 (Pan
right) and Task #6 (Pan up) than in Task #4
(Pan left) and Task #7 (Pan down). Differences in
time between Task #4 and Task #5 and between
Task #6 and Task #7 would uncover the relation
between command acquisition and command manip-
ulation times between the mouse and glove interfaces.

The viewpoint horizontal and vertical pan tasks
were also combined not only to further investigate
the difference in acquisition mentioned above, but
also to demonstrate an instance in which the glove
interface simplifies a multi-step task to a single
gestural command. If the mouse interface has only
one button available for dragging, the user must
acquire and drag two scrollbars separately. The
glove interface can perform the same task without
having to acquire any target and without having to
pan horizontally and vertically separately.

5 Results

5.1 Photo Tasks

Photo Task Completion Time Differences

+ indicates glove perfomed slower than mouse

5.2 Viewpoint Tasks

Viewpoint Task Completion Time Differences

+ indicates glove perfomed slower than mouse

6 Analysis

6.1 Single-Handed Dragging

In single-handed cursor dragging gestures, the glove
interface consistently spent more time acquiring and
dragging the required points than the mouse inter-
face.

6.2 Double-Handed Dragging

Double-handed gestures showed a significant time
improvement over single-handed gestures, which
can be attributed to the availability of two cursors
to drag anywhere on the photo rather than at the

6



photos corners. This larger target area reduced
acquisition time. Dual cursors also doubled the
speed of the command execution.

The double-handed rotation gesture outperformed
the mouse in both acquisition and manipulation
time. This can be attributed to (1) the larger target
area, and (2) a more natural up-down motion as
opposed to an in-out motion.

Overcorrection and poor photo corner acquisi-
tion times with single-handed control have led to
the conclusion that the glove interface cannot match
the accuracy of the mouse interface, at least with
its current sensitivity level. A wider camera lens
and more operational space would be required to
decrease the sensitivity and increase the accuracy.

6.3 Horizontal and Vertical Panning

Task #4 (Pan left) and Task #5 (Pan right) both
required more time to complete with the glove
interface than with the mouse interface. Command
acquisition with the mouse interface was substan-
tially quicker in Task #4 than in Task #5 because
the scrollbar slider was much closer to the task start
button.

Task #6 (Pan up) was the only task of the
four individual panning tasks that the glove in-
terface completed faster than the mouse interface;
there was a significantly faster acquisition time
(23.5%) and only a slightly slower manipulation
time (8.0%). On the other hand, Task #7 (Pan
down) had the second-largest positive time difference.

Because the task start buttons are located at
the bottom of the screen, the user can instantly
activate panning with the glove interface and pan
up. To pan down however, the user must move the
cursor to the upper half of the screen in order to
give enough room to pan down. It is clear that in all
directions, the actual execution of the pan command
took more time with the glove than with the mouse.
The difference is in the distance between the cursor
starting point and the command activation point.

The time needed to activate a command is re-
duced whenever the amount of motion required to
activate it is reduced. This occurred with the mouse
interface in Task #4 (Pan left) when the task start
button and the scrollbar slider were very close to-
gether, and with the glove interface in Task #6 (Pan
up) when the three-finger grab could be executed
instantly after clicking the task start button.

The glove interface has an extra advantage in
that the three-finger grab and drag gesture can be
performed in the same fluid motion. This is exem-
plified in Task #6 when the viewpoint manipulation
time was also reduced, since the cursor was already
in the correct position for command activation and
execution.

6.4 Composition Panning

Task #8 (Pan up and left) and Task #9 (Pan down
and right) took significantly less time to execute
(21.8% and 17.0%, respectively) with the glove in-
terface than with the mouse interface. This is sim-
ply because of how the pan command was defined.
The glove interface can pan horizontally and verti-
cally simultaneously. The mouse interface must pan
horizontally and vertically separately. This results in
a slower acquisition and manipulation time for the
mouse interface.

6.5 Zoom

Task #10 (Zoom) took notably less time to activate
and execute with the glove interface than with the
mouse interface. The shorter command acquisition
time can be attributed to the larger target area of
performing two three-finger grabs anywhere on-screen
with the glove interface, compared to maneuvering
the mouse cursor to the left scrollbar. The zoom
command took less time to perform as well since
the simultaneous movement of both gloves moves the
scrollbar twice as fast as the movement of the scroll-
bar slider with a single mouse cursor.

7



6.6 Overall Assessment

After analyzing experimental data and observations,
the following general advantages and disadvantages
of the glove interface have been identified:

6.6.1 Advantages

1. Performs wirelessly at a distance

2. Requires fewer on-screen controls

3. Allows for the combination and simplification of
multi-step commands

4. Allows for more naturally-defined commands

6.6.2 Disadvantages

1. Less sensitivity and accuracy control

2. Longer physical command execution time when
command complexity matches

3. Time delay between gesture performance and
command execution

4. Arm fatigue

7 Conclusion

This project featured a glove-based user interface
that when used effectively, could match and even
exceed the efficiency of the standard mouse interface,
despite its disadvantages. The hardware was created
from consumer accessible webcam, IR LED, and IR
filter technology. The software bypassed complex
machine vision techniques in favor of proving the
effectiveness of gestural commands. Single-handed
gestures which merely matched the complexity of
the mouse commands took longer to complete and
were less efficient than the mouse commands. Slower
acquisition times, command execution times, and
general inaccuracy were obstacles to the glove inter-
faces success. However, double-handed gestures were
able to match and even exceed the speed at which
a task could be completed. Multi-step commands
for the mouse interface were reduced to single-step

gestures for the glove interface and resulted in a
substantial decrease in execution times.

For the implementation of a glove-based user
interface, all of these findings point to the necessity
of a focus on task completion. The major difference
between the mouse and glove interfaces is the number
of input points. When defined tasks for the glove
interface took advantage of its multiple points of
input, they were completed faster and in some cases,
with fewer actions. Another difference between the
mouse and glove interface is how the command
matches what occurs on-screen. When the actions
required in a gestural command for the glove inter-
face matched the actions occurring on-screen more
closely than the command for the mouse interface,
an improvement in command execution speed also
ensued. This confirms the need for a glove-based user
interface to have a foundation in task completion
and simplification in order to provide for a more
natural and effective human-computer experience.

References

[1] Molina, Jose P., et al. ‘The Development
of Glove-Based Interfaces with the TRES-
D Methodology.’ Virtual Reality Software and
Technology., pp. 216-219, 2006.

[2] Lee, SK, William Buxton, and K. C. Smith. ‘A
Multi-Touch Three Dimensional Touch-Sensitive
Tablet.’ Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. San
Francisco, pp. 21-25, 1985.

[3] Kim, Ji-Sun, et al. ‘iPhone/iPod Touch as Input
Devices for Navigation in Immersive Virtual En-
vironments.’ Virtual Reality Conference, 2009.
VR 2009. IEEE., Lafayette, pp. 261-262, 2009.

[4] Izadi, Shahram, et al. ‘ThinSight: A Thin Form-
Factor Interactive Surface Technology.’ Commu-
nications of the ACM 52.12, pp. 90-98, 2009.

[5] Sturman, David J., and David Zeltzer. ‘A Survey
of Glove-based Input.’ Computer Graphics and
Applications, IEEE., pp. 30-39, 1994.

8



[6] Baek, SeongHo, et al. ‘IRED Gun: Infrared
LED Tracking System for Game Interface.’ Lec-
ture Notes in Computer Science 3768/?2005., pp
688-699, 2005.

[7] Wobbrock, Jacob O., Meredith Ringel Mor-
ris, and Andrew D. Wilson. ‘User-Defined Ges-
tures for Surface Computing.’ Proceedings of the
27th International Conference on Human Fac-
tors in Computing Systems. Boston, pp. 1083-
1092, 2009.

9


