
Scratching the Surface:
Kindergarten Programming

TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Nick Grippin

April 7, 2010

Abstract

Programming is currently being taught at the high school and col-
lege levels; the earliest start a student might get is in middle school.
While there are complicated concepts involved in programming, the
basic problem solving skills and structure can be taught at a much ear-
lier age. This research project involves teaching a Kindergarten course
on programming through the use of Scratch, a programming language
developed by MIT that focuses on visual output and creativity. The
course will have a heavy math focus, tying in various concepts such
as geometry and probability that are required according to the Math
Standards of Learning (SOL). The students will be taught through
a variety of methods, involving creating or deconstructing programs,
hands-on activities and visual examples, as well as simple lectures.
Assessment will be achieved through quizzes or student’s answers to
questions. Results showed that the students have problems with the
intricate math concepts and basic computer usage, as well as attention
issues. In spite of these hindrances, the Kindergarten class has learned
to some extent concepts such as the coordinate plane, geometry, turn-
ing, waiting, starting on command, loops, and random numbers.

Keywords: elementary school, Scratch

1



1 Introduction

Currently, with a few exceptions, no elementary students are being intro-
duced to the programming world. In middle or high school, they are suddenly
plunged into a confusing world of computer jargon and algorithms. Program-
ming can be used as a vehicle to teach any number of techniques and skills,
including Math, English, Science, and other core classes. In this research
project, I will be focusing on the math aspect, bringing in concepts from the
Kindergarten SOL as well as more advanced topics that are necessary for
Scratch programming.

1.1 Scratch Overview

Scratch was developed by MIT and released 2007. The program is designed
especially for young children to teenagers, and as such is based heavily on
visual aspects, sacrificing some of the more advanced coding abilities. The
screen is divided into the a) stage, where the output takes place, b) script,
for inserting and changing code, c) a list of current sprites, and d) the cat-
alog of code, arranged under eight differently colored tabs (Maloney). The
code, shaped into puzzle pieces, always directly influences a sprite, allow-
ing it to perform any number of different commands or interact with other
sprites. Through the use of dozens of colorful sprites, uniquely shaped code,
and easy interface, the Scratch program is the perfect introductory tool to
programming.

1.2 Previous Research

Previous research in this area has found that Scratch is well designed, discov-
ering that students in higher grades can almost teach themselves through the
program. The article Programming by Choice: Urban Youth Learning Pro-
gramming with Scratch discusses how students ages 8 to 18 learned Scratch
over a 18 month-long period. The researchers took programs written through-
out the year, and analyzed how the students were learning, even if there were
no instructors proficient in Scratch available in the classroom. The study,
along with others, confirms that the well-built Scratch program is an excel-
lent tool for teaching not only programming, but a variety of other topics
as well. The students in the study were able to learn the ”ins and outs” of

2



Scratch within a few weeks, and were creating complex games and anima-
tions by the end of the class.

1.3 Scratch on the Web

Scratch also provides an excellent opportunity to share projects through their
website, ”http://scratch.mit.edu/”. It allows young programmers to post
their Scratch creations and have other users play and vote on whether or
not they enjoyed the project. A comments section allows the creator to read
feedback, including both praise and constructive critism. I was able to put
the Scratch website to great use, browsing through programs in order to dis-
cover new and inventive ways to approach various problems.

2 Background

In the previous two years, students have already done several research projects
in this area. Jessica Gorman and Crystal Noel worked at Cardinal Forest
last year, and helped students learn the mathematical techniques that the
students needed to know. The main focus was on the coordinate plane, which
required students to first comprehend the use of negative numbers. Gorman
and Noel spent the first two months teaching these topics in order for the stu-
dents to appropriately use the Scratch program. After the coordinate plane
was well ingrained, they spent several months working on a basic program
oriented around a winter theme in order to practically apply these skills in the
Scratch program. The last part of the class was devoted to individual games
of the student’s choice, with the help of the Gorman and Noel to mentor the
students in any other aspects of the language they needed to know.

3 Development

Weekly lessons are currently being taught to a Kindergarten class at Cardinal
Forest Elementary School. The expectation is that the students will have
a working knowledge of programming the Scratch program by the end of
the year. This is being achieved mainly through the construction of various
programs that introduce concepts one at at time. For instance, one of the first

3



programs taught to the students introduced the move and point in direction
concepts, allowing the sprite to move to any position on the board. Later, the
wait command was brought in, which caused the sprite to pause for however
long the user wished. By bringing in commands one at a time, the students
can have time to fully understand that concept before any more concepts
are added. Once a firm foundation was built, I began to incorporate skills
from areas other than programming. Scratch is an excellent way for young
students to learn about programming skills. However, it is also a unique
vehicle to introduce and teach concepts from fields other than programming.
Math is the area that Scratch has the heaviest focus, and as such is perfect
for implementation into the program. I have been building and focusing my
lessons from both a programming and mathematical standpoint, bringing
in concepts from the Kindergarten SOL. A very successful example of this
was the lesson involving shapes, where the students created a program where
they created sprites in four different shapes, then had to move them in certain
directions. Lesson plans are structured with as many visuals and as few words
as possible, with the assumption that the students are not able to read. They
are taught in a variety of ways, from hands-on activities to straight step-by-
step instructions. The latter seem to be better as far as time constraints,
but hands-on activities and visual demonstrations always result in better
comprehension and memorization.

3.1 Coin Flip

Later in the year, in order to study the problem-solving abilities of the
Kindergarten class, I created a program to simulate the flipping of a coin.
Keeping with the math focus, I used it as a springboard to teach the concept
of a random number. In class discussions, the students were able to make
the connection between random numbers and the flipping of a coin. Later
on, they also made the connection between the piece of code that generates
the random numbers in the coin flipping program. I had the students then
try to create the program on their own, using a file with the pieces scattered
around the scripts area.

All the students understood the need to have the ’When Green Flag
clicked’ piece first, but after that step their problem-solving abilities fell short.
Most of the students simply put the pieces of code together in the scattered
order, and when it didn’t work as expected, they would not rearrange the
code to try a different approach. I did not expect for the students to be able

4



Figure 1: The completed code for the coin flip program

to complete the program and get it running perfectly on their own, but I
did expect to see some of the code in a logical order. Instead of looking at
the code to see what it would do , the students would simply put the pieces
together on a whim. While it does show that the students know how to use
the Scratch program and are interested in learning how to create code, the
students have not yet developed the necessary problem-solving skills.

4 Discussion

There are several problems that Scratch brings into the classroom whenever
it is used with the Kindergarten level. The first, and largest problem so far
is simply general computer use. Concepts like right clicking on the mouse,
opening, saving, and navigating through files and folders are all foreign to the
students, and must be taught or walked through step by step. The majority
of the other problems come from the more advanced math topics that are not
introduced in Kindergarten. These topics, such as the coordinate plane and
degrees, also must be taught to some degree, even if it is only a basic under-
standing. Apart from the Scratch-related problems, Kindergarten students
have a notoriously short attention span, which means that lessons must be

5



Figure 2: The completed code for the coin flip program

short, visually appealing, and must grab the attention of the student almost
immediately. Even with these issues, it is still rewarding for both the class
and the instructor when the students are able to memorize and apply con-
cepts from either math and programming. A five-question quiz that I gave
the students to see how well the understood various pieces of code ended with
an average score of three. There were a few zeros that I did not understand
from the students, until I asked how many quizzes they had taken so far. The
answer was also zero. Given the fact that this quiz was their first, and was
noticeably difficult for them, an average score of three was more than accept-
able. Throughout the year, I have attempting teaching math both through
the Scratch program and in straight demonstrations. While hands-on ac-
tivities always seem to work best, the students always understand a math
concept better after seeing it demonstrated in Scratch, thus confirming my
theory that Scratch is an excellent vehicle for teaching in fields other than
programming, even for young students.

5 Expected Results

As far as the student’s ability to program in Scratch on their own, starting
at the Kindergarten level is too early. The necessary problem-solving skills
have not yet developed to the point where the students can think through the
different approaches in order to decide which option would work best. Scratch
can be used at this level as a visual example to teach the Kindergarten Math

6



SOL topics. Students have enjoyed the lessons that use Scratch for visual
examples, and benefit from those lessons more than from lectures. There are
several reasons to continue using Scratch with Kindergarten, primarily the
greater understanding students have of topics taught with Scratch used as
a visual example and as a way of increasing interest. Students also enjoy
the creative freedom and simple way that Scratch approaches coding, which
gives rewards that meet their efforts. It provides an excellent tool to shape
lessons around, or even focus on the student’s problem-solving abilities.

The project will be completed at the end of the year with the students
having a basic understanding of the eight different sections of code, as well as
being able to successfully create programs involving loops, motion, and user
input. Students will also be expected to demonstrate a higher knowledge of
general computer use, such as saving and navigating through files without
help. A much more important goal is for every student to demonstrate full
knowledge of the covered concepts in the Kindergarten Standards of Learn-
ing, as well as concepts from Scratch. The Scratch programming class will
hopefully give them the tools and encourage them to pursue programming
throughout the rest of their education.

References

[1] M. Resnick, “Scratch:Programming for All”, Communications of the
ACM, 2009

[2] K. Peppler, “Collaboration, Computation, and Creativity: Media Arts
Practices in Urban Youth Culture”, Proceedings of the Conference on
Computer Supported Collaborative Learning, 2007.

[3] J. Maloney, “Programming by Choice: Urban Youth Learning Program-
ming with Scratch”, MIT Media Laboratory, 2008

[4] C. Lewis, “How Programming Environment Shapes Perception, Learn-
ing and Goals: Logo vs. Scratch”, Univerisity of California, 2010

7


