
An Educational Rigid-Body Dynamics Physics
Engine

TJHSST Senior Research Project Proposal
Computer Systems Lab 2009-2010

Neal Milstein

April 9, 2010

Abstract

The goal of this project is to create a rigid-body dynamics physics
engine in order to allow physics students to visualize and solve physics
models. Rigid-body dynamics is the study of the motion of non-
deformable, free-moving bodies through space. Such setups involv-
ing rigid bodies are prevalent throughout physics courses, leading to
the value of such a simulation. The engine will improve upon many
current models by focussing on approximating mathematic techniques
with a small percent error, such as Runge-Kutta 4 integration and the
Separating Axis Theorem. The physical responses to these collisions
will be calculated by representing rigid bodies with grids of ellipses,
approximating the physical responses to collisions. The engine inter-
face will allow for the speedy input of a variable number of rigid body
and interaction mechanisms, specifically optimized for an educational
environment.

Keywords: rigid-body dynamics, physics, Runge-Kutta 4 inte-
gration, Separating Axis Theorem, simulation

1 Introduction

The proper visualization of physical models is required to properly under-
stand physics concepts, yet such visualizations can be difficult to produce

1



without the assistance of concrete examples. It is often not possible to simu-
late models using actual physical components in the classroom, and comput-
ers can therefore be substituted as a valuable tool towards allowing students
visualize physics setups. This project will design such a physics simulation,
specifically targeted towards physics students for classroom use. The use
of computer simulation engines in academic physics environments has many
further advantages. Precise results can be obtained from computers with
almost no error margin, and the model can be examined from a number of
different perspectives over varying time intervals to obtain results. The goal
of this project is to develop such a physics engine, so that physical setups
can be visualized on a computer with maximum accuracy, and the complex
interactions between rigid bodies and other physical objects can be studied.
The engine will focus on 2-dimensional space, due to its common use in intro-
ductory physics courses and its consistencies with 3-dimensional space. The
Runge-Kutta 4 integration methods and the Separating Axis Theorem for
collision detection will be primarily researched and implemented to improve
the simulation over many current models, and physical responses to collisions
will be calculated by representing bodies as grids of ellipses.

2 Background

Physics engines present the unique problem of combining small-scale rigid-
body oriented interactions with large-scale physics engine scalability. Re-
search into rigid body dynamics engines can be broken down into the micro-
cosmic lower-level interactions between rigid bodies, and the macrocosmic
large-scale design structures of physics engines. On the microcosmic level,
this simulation uses the Runge-Kutta 4 methods of integration, the Separat-
ing Axis Theorem, and grids of ellipses to calculate impulse forces and colli-
sions. On the macrocosmic level, the model-view-controller design is used by
the engine to separate collision detection algorithms and other interactions
from the rest of the engine.

2.1 Runge-Kutta 4 Integration Methods

Runge-Kutta 4 integration is a method for solving differential equations to
derive the physical state of a moving rigid body. As a simple example, vari-
able acceleration functions are integrated using the Runge-Kutta 4 methods

2



to derive the velocities of bodies. The traditional method for performing
such calculations, and the method used by many physics engines today, is
Euler’s method, where slope estimates are made using the particular state
of the differential equation at the current time step. The error margin of
Euler’s method grows increasingly larger over larger time intervals, to the
point where such simulations cannot be used to extract accurate numerical
results after a short time. Runge-Kutta 4 integration, developed by the Ger-
man mathematicians Carl Runge and Martin Kutta in the early twentieth
century, significantly improves upon this technique by using previous itera-
tions to calculate a much more accurate slope estimate. The previous slope
function are summed over the past six time steps at their midpoints, the re-
sult is divided by the total number of distinct slope values, and the estimate
(called h) is multiplied by the time interval (in milliseconds) to calculate the
following integration.

2.2 The Separating Axis Theorem

The Separating Axis Theorem is the most popular method of 2-Dimensional
collision detection, due both to its versatility and its ease of use. The theorem
states that tow convex 2-Dimensional bodies are only colliding if all of their
separating axes, the axes projected onto the line that lies between the two
bodies, are intersecting. Objects are able to collide in my project if they
implement the Collideable interface and the getVertices() method, which
returns vectors pointing to the body’s vertices. As long as these guidelines
are followed, the separate axis theorem can be used to calculate the collisions
between any two bodies.

2.3 Collision Response

One of the most difficult algorithms to program into a physics engine is the
response to collision. Although humans can generally ”eyeball” how objects
will behave after collisions, programming a computer to do the same, while
holding true to the laws of physics, is much more difficult. This problem is
solved in my simulation by representing bodies as grids of smaller elliptical
bodies connected by elastic springs (see Figure 3).

Each shape is approximated by a grid of much smaller, elliptical bodies.
When the large bodies collide, the ellipses in each body collide with one
another, dragging the entire shape with them. If enough ellipses are used for

3



Figure 1: A diagram illustrating the what is meant by the separating line and
the separating axis, the two defining parts of the Separate Axis Theorem.

each body, then these collisions very closely approximate collisions between
fully rigid bodies.

The springs connecting the ellipses are governed by Hooke’s law, f=-kx.
To prevent the internal forces of the shapes from continuously pulling the
ellipses like jelly, a drag force was programmed to dissipate velocity over
time. The drag force is defined by Stokes’ expression for drag, where force is
applied in the opposite direction to velocity.

2.4 a posteriori versus a priori Collisions

Another aspect of collision detection that must be worked out is whether
to use a posteriori or a priori to detect collisions. The two methods are
summarized below:

1. a posteriori Under this method of collision detection, objects are first
advanced in the simulation (i.e. moved or modified), and then the
physics engine checks for collisions. This is a simple method of detecting
collisions, as it requires very few advance calculations to detect if the
collisions took place. However, it is then more difficult to determine
how the objects should react to the collisions.

4



Figure 2: A triangular shape represented by a grid of ellipses. This setup is
used by the simulation to model responses to collisions.

2. a priori With this method, the trajectories of objects are accurately
calculated, and the engine then detects collisions. This makes the col-
lision detection significantly harder to develop, the reactions of objects
to collisions are much easier to model.

Although a priori collision detection eliminates a few problems associated
with collision response, a posteriori collision detection is more representative
of natural collisions, and it allows for easier scaling and separation of the
collision detection algorithms. Thus, my project uses a posteriori collision
detection. The simulation stores the states of objects in the previous time
step to determine the magnitude of collision responses.

3 Development

I am using the Model-View-Controller (MVC) programming paradigm to
develop my project. The architectural program is used by a number of soft-
ware systems, such as Microsoft’s .NET framework, the open source Ruby on
Rails framework, and a number of common software platforms, such as the
Facebook application platform and twitter. The MVC design differs from the
typical two-part design of physics simulators, where the interface is separated
from the simulator, by adding a third module: the model, used to represent
the underlying data of the engine.

5



One example of the way MVC is used in the simulation is for how col-
lision interactions are processed, as follows: The model stores the data for
the current positions of all rigid bodies in the simulation. The controller
iterates over the bodies and runs the Separating Axis algorithm to deter-
mine which bodies are colliding. It calculates the collision response for the
colliding bodies, changes the color of the colliding bodies (for demonstration
purposes), then updates the model with the new data. The view then reads
the data from the model and draws the bodies to the graphics output. This
demonstrates how the three parts of the program work together to properly
simulate physics, while still maintaining enough separation of concerns to
allow for expansion.

Figure 3: A sample run of the Physics Engine. Ten bodies are connected
via springs, and the simulation is run over a time step. Colliding bodies, as
detected by the Separate Axis Theorem, are shown in red.

3.1 The Model-View-Controller Application Architec-
ture

The Model, where project data (i.e. the underlying physical bodies) is stored,
is represented by a series of classes in the model Java package. The Controller,
which calculates the interactions between the physical components and passes

6



their references to the GUI, is housed in the controller Java package. Lastly,
the View, which is composed of the physics engine’s GUI, is contained in a
number of Java Swing classes in the view Java package.

The Controller (the heart of the physics engine) was first developed by
coding a framework to easily add physical interactions to the engine. Directly
following, development was begun on tension interactions and the Separating
Axis theorem, so that these algorithms could be swiftly incorporated into the
controller. After all the interactions had been coded into the controller, the
model was built, so that physical objects could be added to the simulation.
Lastly, the view was coded and interfaced with the controller, so that a GUI
would be available to display the graphics of my project.

The interface has been developed using common application interface
guidelines to create a flowing, easy-to-use, and academic user interface. Ob-
jects can be drawn using simple drawing tools, and their attributes will soon
be editable using an editing pane attached to the right side of the drawing
window. Such interfaces are common amongst other academic software plat-
forms, allowing the interface to be easily understood and used by physics
students.

4 Results

The results of the physics engine are primarily graphical, with currently very
little numerical output to measure, but enough data can be obtained to
determine the accuracy of the physical interactions within the engine. Of
primary concern is the accuracy of the grid model used to simulate collision
responses. I found that I need to use at least 64 ellipses per virtual square
meter (approximately 2 square inches on a standard screen) to believably
simulate collision interactions. The simulation ran with no lag at this rate,
and the collisions were still accurate. After about 20 seconds, however, the
collisions begin to deviate significantly from the expected results with only
64 ellipses per square meter. I upped this number to 256 ellipses per virtual
square meter, but this caused a small amount of lag in the simulation, which
required me in turn to lower the frame rate. The exact number of ellipses
used by my simulation depends on both the computer architecture it is run
on, and much processing power the computer can allot to the simulation
at a given time. For this reason, I plan to add a scaling calculation that
dynamically changes the number of ellipses used in the irregular objects, so

7



the simulation is as accurate as possible.
In one physical setup found in a research article, an irregularly shaped

”spaceship” is sent through a moving sea of ”astroids,” which are irregular
objects designed to collide with the spaceship. The article discusses the out-
comes of such a simulation, and it details how certain collisions will impact
the overall setup. For example, the article tries to predict the number of
collisions that will result when different shapes for the spaceship are used. I
tried simulating this model in my simulation, and achieved results very simi-
lar to those predicted in the article. For example, when the ”spaceship” was
fired into a ”sea” at a rate of one new convex shape per second, I recorded 5
collisions, which was in this case the exact same number of collisions reported
in the article.

One of the most important aspects of my simulation will be its effective-
ness in an educational setting. To test the straightforwardness and academic
flexibility of my program, I will employ the use of physics students to draw
their physical models into the application, after which the models can be
evaluated for their similarity to the models portrayed in the textbook. The
graphical user interface will be successful if is is fully functional, expandable,
straightforward, and easy to use. The time it takes to draw physical mod-
els into the application will be measured. Any additional tools required to
solve physics setups will be added, and the measuring capabilities required
to extract proper physical information will be added. If the physics engine
is fully functional and accurate, in addition to providing an educational and
straightforward interface, then my project will be a success.

References

[1] C. Glocker, ”On Frictionless Impact Models in Rigid-Body Systems”,
http://www.jstor.org/stable/3066369

[2] D. E. Stewart, ”Rigid-Body Dynamics with Friction and impact”,
http://www.jstor.org/stable/2653374

[3] R. K. Alexander, J. J. Coyle, ”Runge-Kutta Methods and Differential-
Algebraic Systems”,
http://www.jstor.org/stable/2157857

8



[4] O. Hilliges, S. Izadi, D. Kirk, A. Garcia-Mendoza, A. D. Wilson, ”Bring-
ing Physics to the Surface”,
http://portal.acm.org/citation.cfm?id=1449715.1449728

[5] C. B. Price, ”The usability of a commercial game physics engine to
develop physics educational materials: An investigation”,
http://portal.acm.org/citation.cfm?id=1401790.1401794

[6] I. Papaderou-Vogiatzaki, ” A Collision Probability Problem ”,
http://www.jstor.org/stable/3213989

9


