
Developing a Rigid-Body Dynamics Developing a Rigid-Body Dynamics 
Physics EnginePhysics Engine

Neal MilsteinNeal Milstein
Computer Systems Lab

Abstract

Background

Developments

Discussion of Results

The goal of this project is to create a rigid-body dynamics 
physics engine in order to allow physics students to 
visualize and solve physics models. Rigid-body dynamics 
is the study of the motion of non-deformable, free-moving 
bodies through space. Such setups involving rigid bodies 
are prevalent throughout physics courses, leading to the 
value of such a simulation. The engine will improve upon 
many current models by focussing on approximating 
mathematic techniques with a small percent error, such as 
Runge-Kutta 4 integration and the Separating Axis 
Theorem. The physical responses to these collisions will 
be calculated by representing rigid bodies with grids of 
ellipses, approximating the physical responses to 
collisions. The engine interface will allow for the speedy 
input of a variable number of rigid body and interaction 
mechanisms, specifically optimized for an educational 
environment.

Physics engines present the unique problem of 
combining small-scale rigid-body oriented interactions 
with large-scale physics engine scalability. Research 
into rigid body dynamics engines can be broken down 
into the microcosmic lower-level interactions between 
rigid bodies, and the macrocosmic large-scale design 
structures of physics engines. On the microcosmic 
level, the simulation uses the Runge-Kutta 4 methods of 
integration and the Separating Axis Theorem to 
calculate impulse forces and collisions. On the 
macrocosmic level, the model-view-controller design is 
used by the engine to separate collision detection 
algorithms and other interactions from the rest of the 
engine.

The engine uses the Model-View-Controller (MVC) programming paradigm to 
develop my project. The architectural program is used by a number of 
software systems, such as Microsoft's .NET framework, the open source 
Ruby on Rails framework, and a number of common software platforms, 
such as the Facebook application platform and twitter. The MVC design 
differs from the typical two-part design of physics simulators, where the 
interface is separated from the simulator, by adding a third module: the 
model, used to represent the underlying data of the engine.

The results of the physics engine are primarily graphical, with currently very little 
numerical output to measure, but enough data can be obtained to determine the 
accuracy of the physical interactions within the engine. Of primary concern is the 
accuracy of the grid model used to simulate collision responses. I found that I 
need to use at least 64 ellipses per virtual square meter (approximately 2 square 
inches on a standard screen) to believably simulate collision interactions. The 
simulation ran with no lag at this rate, and the collisions were still accurate. After 
about 20 seconds, however, the collisions begin to deviate signifi cantly from the 
expected results with only 64 ellipses per square meter. I upped this number to 
256 ellipses per virtual square meter, but this caused a small amount of lag in the 
simulation, which required me in turn to lower the frame rate. The exact number 
of ellipses used by my simulation depends on both the computer architecture it is 
run on, and much processing power the computer can allot to the simulation at a 
given time. For this reason, I plan to add a scaling calculation that dynamically 
changes the number of ellipses used in the irregular objects, so the simulation is 
as accurate as possible.

In one physical setup found in a research article, an irregularly shaped 
"spaceship" is sent through a moving sea of "astroids," which are irregular 
objects designed to collide with the spaceship. The article discusses the 
outcomes of such a simulation, and it details how certain collisions will impact the 
overall setup. For example, the article tries to predict the number of collisions that 
will result when different shapes for the spaceship are used. I tried simulating this 
model in my simulation, and achieved results very similar to those predicted in 
the article. For example, when the "spaceship" was fi red into a "sea" at a rate of 
one new convex shape per second, I recorded 5 collisions, which was in this 
case the exact same number of collisions reported in the article.

A triangular shape represented by a 
grid of ellipses. This setup is used by 
the simulation to model responses to 
collisions.

The separate Axis Theorem used for 
Circular Objects. If all all of the 
separating axes (represented here by 
the thick lines) are intersecting, then 
the two objects are colliding.

An example setup, where a grid of bodies is connected 
via springs. I used this model to ensure mechanical 
energy was conserved in my program.

Collision Response
To model the responses to collisions, my program 
represents bodies as grids of ellipses. If enough 
ellipses are used (around 64 per virtual square meter), 
the the collisions between the meshes will simulate 
collisions with a small degree of error.


	Slide 1

