
COMPUTER SYSTEMS RESEARCH

Portfolio Update 3rd Quarter 2009-2010

Research Paper, Poster, Slides, Coding, Analysis and Testing of your project's program.
Name: Neal Milstein, Period: 3, Date: April 8, 2010
Project title or subject: Developing an Educational Rigid-Body Dynamics Physics Engine

Computer Language: Java
Describe the updates you have made to your research portfolio for 3rd quarter.

1. Research paper: Paste here new text you've added to your paper for 3rd quarter. Describe and include new images, screenshots, or diagrams you are using for 3rd quarter.
Specify text you've written for any of the following sections of your paper:

- Abstract

The physical responses to these collisions will be calculated by representing rigid bodies with grids of ellipses, approximating the physical responses to collisions.

- Introduction or Background

The Runge-Kutta 4 integration methods and the Separating Axis Theorem for collision detection will be primarily researched and implemented to improve the simulation over many current models, and physical responses to collisions will be calculated by representing bodies as grids of ellipses.
2.3 Collision Response

One of the most difficult algorithms to program into a physics engine is the response to collision. Although humans can generally ”eyeball” how objects will behave after collisions, programming a computer to do the same, while holding true to the laws of physics, is much more difficult. This problem is solved in my simulation by representing bodies as grids of smaller elliptical bodies connected by elastic springs (see Figure 3).

Each shape is approximated by a grid of much smaller, elliptical bodies. When the large bodies collide, the ellipses in each body collide with one another, dragging the entire shape with them. If enough ellipses are used for

3Figure 1: A diagram illustrating the what is meant by the separating line and the separating axis, the two defining parts of the Separate Axis Theorem.

each body, then these collisions very closely approximate collisions between fully rigid bodies.

The springs connecting the ellipses are governed by Hooke’s law, f=-kx. To prevent the internal forces of the shapes from continuously pulling the ellipses like jelly, a drag force was programmed to dissipate velocity over time. The drag force is defined by Stokes’ expression for drag, where force is applied in the opposite direction to velocity.

- Development section(s) – the work you've actually done

One example of the way MVC is used in the simulation is for how collision interactions are processed, as follows: The model stores the data for the current positions of all rigid bodies in the simulation. The controller iterates over the bodies and runs the Separating Axis algorithm to deter- mine which bodies are colliding. It calculates the collision response for the colliding bodies, changes the color of the colliding bodies (for demonstration purposes), then updates the model with the new data. The view then reads the data from the model and draws the bodies to the graphics output. This demonstrates how the three parts of the program work together to properly simulate physics, while still maintaining enough separation of concerns to allow for expansion.

- Results – if you're reaching any preliminary conclusions

The results of the physics engine are primarily graphical, with currently very little numerical output to measure, but enough data can be obtained to determine the accuracy of the physical interactions within the engine. Of primary concern is the accuracy of the grid model used to simulate collision responses. I found that I need to use at least 64 ellipses per virtual square meter (approximately 2 square inches on a standard screen) to believably simulate collision interactions. The simulation ran with no lag at this rate, and the collisions were still accurate. After about 20 seconds, however, the collisions begin to deviate significantly from the expected results with only 64 ellipses per square meter. I upped this number to 256 ellipses per virtual square meter, but this caused a small amount of lag in the simulation, which required me in turn to lower the frame rate. The exact number of ellipses used by my simulation depends on both the computer architecture it is run on, and much processing power the computer can allot to the simulation at a given time. For this reason, I plan to add a scaling calculation that dynamically changes the number of ellipses used in the irregular objects, so the simulation is as accurate as possible.

In one physical setup found in a research article, an irregularly shaped "spaceship" is sent through a moving sea of "astroids," which are irregular objects designed to collide with the spaceship. The article discusses the outcomes of such a simulation, and it details how certain collisions will impact the overall setup. For example, the article tries to predict the number of collisions that will result when different shapes for the spaceship are used. I tried simulating this model in my simulation, and achieved results very similar to those predicted in the article. For example, when the "spaceship" was fired into a "sea" at a rate of one new convex shape per second, I recorded 5 collisions, which was in this case the exact same number of collisions reported in the article.

- Additions to your bibliography

[6] I. Papaderou-Vogiatzaki, ” A Collision Probability Problem ”, http://www.jstor.org/stable/3213989

- images, screenshots, or diagrams in your paper

2. Poster: Copy in new text you've added to your poster for 3rd quarter.
List the titles you're using for each of your subsections. Include new text you're adding

· Subsection heading: Collision Response and text:
· To model the responses to collisions, my program represents bodies as grids of ellipses. If enough ellipses are used (around 64 per virtual square meter), the the collisions between the meshes will simulate collisions with a small degree of error.
· Subsection heading: Discussion of Results and text:
· The results of the physics engine are primarily graphical, with currently very little numerical output to measure, but enough data can be obtained to determine the accuracy of the physical interactions within the engine. Of primary concern is the accuracy of the grid model used to simulate collision responses. I found that I need to use at least 64 ellipses per virtual square meter (approximately 2 square inches on a standard screen) to believably simulate collision interactions. The simulation ran with no lag at this rate, and the collisions were still accurate. After about 20 seconds, however, the collisions begin to deviate significantly from the expected results with only 64 ellipses per square meter. I upped this number to 256 ellipses per virtual square meter, but this caused a small amount of lag in the simulation, which required me in turn to lower the frame rate. The exact number of ellipses used by my simulation depends on both the computer architecture it is run on, and much processing power the computer can allot to the simulation at a given time. For this reason, I plan to add a scaling calculation that dynamically changes the number of ellipses used in the irregular objects, so the simulation is as accurate as possible.
· In one physical setup found in a research article, an irregularly shaped "spaceship" is sent through a moving sea of "astroids," which are irregular objects designed to collide with the spaceship. The article discusses the outcomes of such a simulation, and it details how certain collisions will impact the overall setup. For example, the article tries to predict the number of collisions that will result when different shapes for the spaceship are used. I tried simulating this model in my simulation, and achieved results very similar to those predicted in the article. For example, when the "spaceship" was fired into a "sea" at a rate of one new convex shape per second, I recorded 5 collisions, which was in this case the exact same number of collisions reported in the article.
· images, screenshots, or diagrams in your poster.

[image: image4.png]

[image: image2]
3. Presentation slides: Provide a brief outline summarizing the main points of your presentation for 3rd quarter
I have added three slides detailing the new code for collision response. They go over the new elliptical grid approach used to simulate bodies. I also updated the abstract and introduction to reflect these changes. My presentation is organized like my code, into a Model, a View, and a Controller section. It also goes into some of the more nitty-gritty calculations

4. Coding: attach new code that you wrote 3rd quarter. Describe the purpose of this code in terms of your project's goal and research. Also provide clear commentary on the main sections of your code.
This is my code for the Irregular Shape drawing tool, which is a part of my program's view (GUI). The tool creates matrices of ellipses connected by elastic springs, which represent irregular shapes.

public class IrregularShapeTool extends Tool

{

private IrregularShapeDrawListener IrregularShapeListener;

 public IrregularShapeTool(Toolbar parent)

 {

 super(parent);

 }

 final String NAME = "Irregular Shape";

 public String getName()

 {

 return NAME;

 }

 public void select()

 {

getParent().getParent().getRender().setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

IrregularShapeListener = new IrregularShapeDrawListener(getParent().getParent().getRender());

getParent().getParent().getRender().addMouseListener(IrregularShapeListener);

 }

 public void deselect()

 {

 Render render = getParent().getParent().getRender();

 render.removeMouseListener(IrregularShapeListener);

 }

}

class IrregularShapeDrawListener extends MouseAdapter

{

private Render render;

private boolean IrregularShapeStarted = false;

private double x1 = 0, y1 = 0;

public IrregularShapeDrawListener(Render render)

{

this.render = render;

}

public void mousePressed(MouseEvent e) {

if (e.getButton() == MouseEvent.BUTTON1) {

if (!IrregularShapeStarted) {

IrregularShapeStarted = true;

x1 = e.getX();

y1 = e.getY();

} else {

IrregularShapeStarted = false;

x1 -= render.getDimension().getWidth() / 2;

y1 = render.getDimension().getHeight() - y1;

y1 -= render.getDimension().getHeight() / 2;

double x2 = e.getX() - (render.getDimension().getWidth() / 2);

double y2 = (render.getDimension().getHeight() - e.getY()) - (render.getDimension().getHeight() / 2);

double posX = (x1 + x2) / 2.0;

double posY = (y1 + y2) / 2.0;

double width = Math.abs(x2 - x1);

double height = Math.abs(y2 - y1);

try {

render.getModels().getFirst().add(new IrregularShape(new Reference(new Vector(posX / 100.0, posY / 100.0), new Vector(1.0, 1.0), new Vector(0, 0)), 1, new Vector(width / 100.0, height / 100.0)));

} catch (Exception e1) {

}

}

}

}

}

To fix my issue with ConcurrentModificationExceptions, I am using three array lists (one for the current list of Elements, one for the Elements that need to be added, and one for the Elements that need to be removed) to manage the simulations’s Elements. This prevents Elements from being added or removed in the middle of an iteration, which would throw an Exception. Objects are emptied from the addObjects and removalObjects ArrayLists each frame before the elements are iterated over.

private ArrayList<Element> elements = new ArrayList<Element>();

private ArrayList<Element> removalObjects = new ArrayList<Element>();

private ArrayList<Element> addObjects = new ArrayList<Element>();

public void addElement(Element mo)

{

addObjects.add(mo);

}

public void removeElement(Element mo)

{

removalObjects.add(mo);

}

// The action listener for each frame iteration

public void actionPerformed(ActionEvent e)

{

Graphics2D buffer = mainPanel.getBuffer();

buffer.setColor(Color.WHITE);

buffer.fillRect(0, 0, (int)mainDimension.getWidth(), (int)mainDimension.getHeight());

for (Element mo : Elements) {

mo.act();

}

for (Element ro : removalObjects) {

ro.removeFromMap();

Elements.remove(ro);

}

removalObjects.clear();

for (Element ao : addObjects) {

Elements.add(ao);

ao.addToMap(Map.this);

}

addObjects.clear();

for (Element mo : Elements) {

mo.draw(buffer);

}

mainPanel.repaint();

}

This code, a part of the controller (the engine), calculates the bounds of my IrregularShape elements and overlays a solid-filled shape over them. This does two things: it allows my shapes to be represented by grids of ellipses from the perspective of the physics engine, while showing them to the human user in the form of shapes; and it allows me to easily calculate the bounding box of my irregular shapes, which will speed up collision detection by only detecting collisions between shapes whose bounding boxes are intersecting.

public class OverlayDrawer extends Drawer

{

 private Color blue = new Color(0x66ccff);

 private Color lightBlue = new Color(0x0099ff);

 public OverlayDrawer(LinkedList<Model> models, Graphics2D buffer)

 {

 super(models, buffer);

 }

 public void draw()

 {

Model model = models.getFirst();

 for (Element e : model) {

 if (e instanceof IrregularShape) {

 double[] bounds = e.getBounds(new Vector(e.rightSide() - e.leftSide()));

 Vector[] vertices = e.getVertices();

 double[] notations = IrregularShape.notate(bounds, vertices, 4);

 for (int i=0; i<notations.length; i++) {

vertices[i] = vertices[i].dot(vertices[i++]);

 }

 vertices[0].norm();

 for(int i=0; i<vertices.length i++) {

buffer.drawLine(vertices[i].getXComp(), vertices[i].getYComp(), vertices[i++].getXComp(), vertices[i++].getYComp())

 }

 View.redraw();

 }

 }

 }

}

This code adds wind resistance to my irregular shape grids, which is required to prevent them from moving internally forever (like jelly). I used a HashSet for the forces, because I did not want duplicate forces between objects (which would lead to errors where objects are affected by twice as much drag). To properly use the HashSet’s non-duplicate features, I overrode the hashCode() and equals() methods of the DragForce object.

public void interact()

 {

 HashSet<DragForce> windResistances = new HashSet<DragForce>();

 for (Element e : model) {

 if (e instanceof Aabb) {

 Aabb source = (Aabb)e;

 for (Element t : model) {

if (t == e) {

break;

}

if (t instanceof Aabb) {

Aabb target = (Aabb)t;

if (Math.abs(target.getReference().getPosition().getXComp() - source.getReference().getPosition().getXComp()) < (source.getDimension().getXComp() + target.getDimension().getXComp()) / 2 &&

Math.abs(target.getReference().getPosition().getYComp() - source.getReference().getPosition().getYComp()) < (source.getDimension().getYComp() + target.getDimension().getYComp()) / 2) {

windResistances.add(new DragSource(source, target));

}

}

 }

 }

 }

class DragForce

{

 private Body bodyA, bodyB;

 public DragForce(Body bodyA, Body bodyB)

 {

 this.bodyA = bodyA;

 this.bodyB = bodyB;

 }

 public boolean equals(Object otherObj)

 {

 if (otherObj == null) {

 return false;

 }

 DragForce other = (DragForce)otherObj;

 return (other.bodyA == bodyA && other.bodyB == bodyB) || (other.bodyA == bodyB && other.bodyB == bodyA);

 }

 public int hashCode()

 {

 return bodyA.hashCode() + bodyB.hashCode();

 }

 public void collide()

 {

bodyA.setColliding(true);

bodyB.setColliding(true);

 }
 5. Testing, Analysis – specific listings/descriptions of the tests and analysis you've done this
 quarter.
I have written an interim testing program, which imports my physics engine and runs tests to ensure the different physical interactions are still functioning. I am also analyzing the interactions in my program, such as the collision interactions, to test their accuracy. I am using a few non-conventional methods for this physics engine, such as representing bodies with grids of ellipses, and as such, one of the measures of the success of my engine will be how accurately I can simulate physical laws.
5. Running your project – describe what your project's program actually does in it's current stage. Include current analysis and testing you're doing. Specifically what have you done this quarter.
Currently, my program simulates a number of common physical phenomena studied in introductory physics classes. It features a GUI that allows for the drawing of bodies, and it can be programmed to run a setup over a time step to give a proper visualization of physical models. The main physical law simulated is collision detection and response. The algorithm used for collision detection is the separating axis theorem, and the process for collision response uses grids of ellipses to simulate collisions between irregular objects. This quarter, I programmed the interactions for collision response, which use the grids of ellipses. This required new data classes to be added to the model, which are used to create grids representing shapes. I also programmed aerodynamic drag into these shapes to prevent them from moving continuously
6. What is your focus for wrapping up your project for 4th quarter?
For 4th quarter, I will focus on polishing my program into a completed package. Most of the necessary physical interactions have already programmed in, though I still need to work a little more on the collision responses (I have encountered a bug where the object meshes can become entangled, for example). One of the original goals for my project was to make it apt for an educational environment, and this is still my intent. The GUI as of right now contains only a few drawing tools and is designed primarily for testing; I will have to significantly update it for the final product. Once this is done, I would like to add physical interactions to simulate friction and gravity, two very common physics classroom concepts.

[image: image1][image: image3.png]Drawing tools:

