Victor Shepardson

Latimer 3

Code Writeup 3Q

The current version of my synthesizer used objects called Elements which can be interlinked to implement AM, FM, additive, and cross coupled oscillator synthesis. Element is an abstract class, and instances can be Oscillators, Constants, Mixers, etc. The GUI calls functions defined or mentioned in the definition of Element, blind to the specific type of Element. Functions in Element which expect a certain input type use void*, and verify the input/cast to the correct type where they are defined in an subclass of Element. The use of polymorphism allows easier coding of the interface and compatibility of an established interface with any new extension of Element I care to implement. Element has a private virtual function compute() which is defined by every subclass; compute() is some function of the Element's input values. Elements also have step() and update() functions, which call compute and store the returned value, and set the Element's output to the stored value, respectively. Elements can be linked together by setting the inputs Elements to the outputs of other Elements. A few basic Elements are: Oscillator, Constant, and Mix_Sum.

Oscillators have a waveform parameter (a pointer to a block of memory containing one of the discrete waveforms mentioned above), an amplitude input, and a frequency input. They also store their own phase parameter. Oscillator::compute() increments the phase parameter based on the audio sample rate and the value appearing at its frequency input and converts the current value of phase to a index in the array pointed to by its waveform parameter. It returns the value of the waveform at that index multiplied by the value appearing at the amplitude input. Constants are a simple Element with no inputs and a single value parameter. Constant::compute() merely returns the value of its parameter. Mix_Sums have a variable number of inputs, specified at creation, and a gain parameter. Mix_Sum::compute() returns the sum of the values at the inputs, multiplied by the gain. I have also implemented Partial and Ramp elements for convenience and testing purposes. In the future, other types of Element could include filters and functions generated by notation objects.

The GUI so far consists of a Gtk::Window displaying a drop down menu and a list of existing Elements. Clicking on a Element expands or collapses a list of fields for input and parameters. So far inputs and parameters cannot be successfully changed via this interface, however. The drop down menu contains commands to create an instance of each type of element, and run a loop over time. These work as intended. The core synthesizer is independent from the GUI; an Element has list of Field objects which contain all the information the GUI needs to know about its inputs and parameters.

