
Developing a Versatile Audio Synthesizer
Victor Shepardson

Computer Systems Lab 2009-2010

Abstract

Background

Development
A software audio synthesizer is being implemented in C++,
capable of taking musical and non musical input information and
using additive and FM methods of synthesis to achieve rich
spectra, vibrato, tremolo, and smooth pitch change effects.

Fig 2: the signals in fig 1 on a longer time scale

Fig 1: waveforms generated using additive synthesis

Fig 3: FM implemented with Elements

Results and Conclusions

Electronic sound synthesis has been of interest to musicians,
electrical engineers and computer scientists for as long as it has
been practical. The goal of this project is to create an easy-to-
use piece of software for exploring multiple methods of sound
synthesis using digital oscillators.

Additive Synthesis
An audio signal which behaves periodically over long enough

time domains can be represented by a collection of sine waves
with different phase, frequency and amplitude called a spectrum
(Moore). Additive synthesis creates audio signals by
superimposing waveforms or by using Fourier Transforms to
convert spectra to audio signals.

FM Synthesis
 Frequency Modulation synthesis uses one signal to modulate
the the frequency of another, producing an harmonically complex
signal with just one oscillator. In FM synthesis, the carrier and
modulating frequencies are both in the audio band; the result is
an output signal which contains the carrier frequency as well as
many audible sideband frequencies.

Cross Coupled Oscillators
In the case of cross coupled oscillators, two oscillators are

linked together, the output of each modulating either the
amplitude or frequency of the other. This can produce many
kinds of temporally varying spectra, from insect-like buzzing
sounds to running water to unpredictably shifting noise
(Miranda).

Previous Iterations
Previous versions were implemented in Python and rely on

hardcoding in values and sequencing statements within the
program as methods of input. A later version uses a text based UI
to allow external control through a terminal. These versions
compose frequency, envelope, and waveform functions to generate
audio. Later Python versions also have notation functions, capable
of generating other functions from a string of musical notation.

Current Version
 The current version was built from the ground up in C++. The
basic method of synthesis is the same, but trades a relatively small
amount of memory use for a drastic speed increase. Rather than
using a collection of functions which must be stitched together in
the body of the program, this version uses a collection of
synthesizer element objects, instances of which can be created,
altered and connected using a graphic interface.

These objects all inherit from an abstract class Element; Each
Element has one output and some number of inputs as well as
some number of constant parameters. Elements can be linked
together by setting the inputs Elements to the outputs of other
Elements. A few basic Elements are: Oscillator, Constant, and
Mix_Sum.

Oscillator
 Oscillators take amplitude and
frequency inputs and output a
discrete waveform with those
parameters.
Constant
 Constants take no input and
output a single stored
parameter value.
Mix_Sum
 This typer of mixer takes a
variable number of inputs and
outputs their sum, multiplied by
a gain parameter.

 By creating and linking Elements, additive
synthesis, FM synthesis, and feedback/cross
couple oscillators can all be implemented.

Those Elements implemented work properly, though the GUI
cannot effectively control them yet. The core modular synthesizer,
however, is capable of AM, FM, additive synthesis, and feedback.

 The goal was to produce a creatively useful piece of software.
At present, versions of the synthesizer are usable by the author,
and can produce music in a range of timbres.

 Testing has been primarily by ear. This has been sufficient to
confirm that the correct audio is being produced. Speed testing
was difficult to implement in Python versions without impacting
performance; testing C++ versus Python versions has not been
attempted rigorously, however, the newest version appears
significantly faster and produces audio as expected.

Testing

	Slide 1

