COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Vivaek Shivakumar, Period: 3

2. Date of this version of your program: April 6, 2010

3. Project title: Generating Puns

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

The various programs for the different types of word phenomena/games I am generating are:
Anagrams.py:

def prepdic() and def sortdic() prepares the word dictionary mapping words to their anagram values

def alph(str) returns str with its letters alphabetized (i.e., the anagram value)

def look(str,d) gives other words with the same anagram value as the string

def gen(str,d) generates valid anagrams of the given string
cross.py:

def rels(input) returns related words, synonyms, etc. of input, retrieved from WordNet

def diff(a1,a2) uses the minimum cost distance algorithm to give the minimum edit cost between two given arrays

def possSims(pron, n) is a recursive algorithm to generate all possible ‘similarly pronounced’ words, i.e. those with slight differences in the pronunciation notation, with a maximum difference of n

def makeDics() makes the dictionary mapping word to pronunciation as well as one of word to similarly pronounced words

· the main method of the program runs makeDics() and takes user input of a word, and then finding a relation, a similarly pronounced word of the relation, and then a relation of the similarly pronounced word, comes up with a set of four words with which to make a pun/riddle
palindromes.py:

def rev(str) reverses a string

def segment() is a recursive algorithm that tries to segment the entirety of a given string into valid English words, and if it is not possible returns False
· the main part of the program uses a stack, picking random words and creating mirror images while segmenting to try to create a palindrome

wordtoacronym.py:

def internetwords(input): gets the word relations by taking strings from internet sources, e.g. online dictionary

def rels(input): gets the related words, synonyms, etc. of the input from WordNet

· the main method of the program gets all possible word relations and, storing them in an alphabetical dictionary, tries to fill the input letters as an acronym/acrostic
fromlisp.py

This code is actually a Python translation of original code in Lisp from #http://grok-code.com
Here are the headers and descriptions as stated in the original:

class WordProp:
 def __init__(self, literal=None, relation=[], homophone=[], POS=None, anim=None, art=None):
Add a word to the vocab-list if it isn't already there
If the POS in unspecified, it defaults to 'n (noun)
Other acceptable parts of speech are 'm (modifier), 'b (both), 'x (neither)
anim (animated) can be 't (true) 'f (false) 'b (both), the default is 'f
art (article) can be 't (true) or 'f (false), the default is 't
def add_word(literal, POS = 'n', anim='f', art=True):

def add_relation(literal1,literal2,POS1='n',POS2='n',anim1='f',anim2='f',art1=True,art2=True):
def add_homophone(literal1,literal2,POS1='n',POS2='n',anim1='f',anim2='f',art1=True,art2=True):
use some common grammer rules to add suffixes to the literal, return a list of possible words
def add_suffix(word_prop):

returns relations of the literal, and relations of the literal with common sufixes,
the return list is made of word-props
the input is a string literal
def derive_words(lit):

def add_article(str):
def print_joke(word1,word2,mod1,mod2,answer):
Add some knowledge, so we can turn it into jokes
def seed_knowledge_test():

Add some knowledge, so we can turn it into jokes
def seed_knowledge():

adds the the punchline
def add_punchline(str):

see if we can combine words by using substrings: cat + parrot = carrot
args and return value are strings
the suffix is always taken from the shorter word
def make_substring_word(word1,word2,pos=None):

returns true if word-prop can be that kind of speech
def is_POS(pos, word_prop):
takes strings or word-props returns true if they have they same animated quatlity
def anim_match(str1,str2):

arg words should be strings
returns a word-prop formed by combining the two arg words
the word-prop-literal may contain words that are homophones of known words.
def make_compound(word1,word2,pos=None):

returns a string that will answer the joke, if possible
word1 and word2 are strings
mod1 and mod2 are strings or nil if no modifier
def answer_joke(word1,word2,mod1,mod2):
#iterates through the vocabulary, tries to answer a joke for each pair of vocabulary words
def generate():
5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

I expect to improve accuracy/success of some programs like the acronym and palindrome programs, come up with more efficient methods and finish coding for the anagram and my original pun-generating program, and extend the Python translation of the Lisp code to use not just hardcoded data built for generating jokes successfully, but to use a heuristic of sorts to pick out words that might make jokes from a general English database and then create the joke.
