TJHSST Computer Systems Lab Senior
Research Project

Word Play Generation
2009-2010

Vivaek Shivakumar

April 9, 2010

Abstract

Computational humor is a subfield of artificial intelligence focusing
on computer recognition and generation of humorous language. This
paper investigates methods for generating various types of word play
(e.g., puns, palindromes, acronyms) using a lexicon from the Natural
Language Toolkit and the semantic web WordNet as well as phonetic
information, which is the basis for manypuns. Although no formal
model or theory for humor exists, pun-generation has been imple-
mented using simple, constrained models and this project attempts to
recreate such implementations with possible expansions to more types
of word play.

Keywords: computational humor, pun, word game

1 Introduction

One of the main goals of artificial intelligence is natural language generation,
meaning that computers should eventually be able to generate meaningful
text that would require human intelligence and cognition to produce. One
aspect of human language that is of interest to Al is humor. Not only is
humor essential to the goals of computer creativity, but humor generation



has applications for language development and teaching, and is essential for
the future of human-computer interaction [1].

The purpose of this project is to investigate and implement methods for
generating humor, specifically various types of short puns and word play.
Puns include spoonerisms, humorous acronyms, and a variety of other forms.
However, there is no strict definition for a pun [2]. Furthermore, puns and
humor in general have not been studied to the point of developing a formal
model of humor that could be used in Al applicaitons [3]. Nevertheless, work
has been done in the area of pun generation since 1994 [4] culminating in
advanced user-interface programs such as STANDUP [5].

2 Background

Humor has been studied extensively in a social or otherwise non-Al con-
text. Although much literature on humor and human cognition with respect
to humor has indicated patterns and similarities yielding some informal ac-
counts of humor such as the incongruity theory, no formal models or theories
yet exist to facilitate the application of humor to Al [3]. Nevertheless, the
possibility of computer generation or recognition of humor is by no means
impossible. Several computer programs have been created to generate small
puns, including JAPE, which was based on certain classes of puns modeled
by schema and templates and utilizing the large lexicon WordNet. Recently,
a successful effort called STANDUP was put through to improve JAPE and
create a full interactive module for generating puns geared towards “children
with complex communication needs”. [5]

Other applications of computational humor that have been implemented
include a humorous acronym-builder, a “What do you get when you cross”
generator, and several joke-recognition applications. [5][6]

2.1 Word Play

Various types of word play exist, such as acronyms and backronyms, palin-
dromes, anagrams, spoonerisms, and puns. Not much research exists on the
generation of sophisticated and new instances of such word games, other
than puns. However, one project (Stock and Strapparava) [7] created HA-
HAcronym, a program to reanalyze existing acronyms by substituting words



to result in humorous interpretations, e.g. FBI = Fantastic Bureau of Intim-
idation. Some examples of other types of word games:

e Palindrome: A man, a plan, a canal- Panama!

e Anagram: “Eleven plus two” = “Twelve plus one”

2.2 Puns

Most popular types of puns that could potentially be implemented for gen-
eration, e.g. question-answer riddle puns, have some element of combining
seemingly unrelated or random elements in a way that plays not necessarily
on the semantics of the words themselves but on the phonetics. Some tech-
niques employed by pronunciation-based puns include rhyming, homonyms,
spoonerisms (trading initial sounds in sets of words) and syllable/word sub-
stitution based on phonetic similarity. Some examples:

e What do you get when you cross a murderer with a breakfast food? A
cereal killer.

e What is the difference between leaves and a car? One you brush and
rake, the other you rush and brake.

e Pasteurise: too fast to see. (An example of redefinition wordplay) [8]

Other types of puns and jokes include knock-knock jokes and Tom Swifty
puns [8]. Jokes such as “yo mama” jokes or “Chuck Norris facts” on the
other hand are based on complex semantic and pragmatic specifications and
relationships that are outside the scope of phonetic-pun-based computational
humor.

3 Methodology

3.1 Punning Riddles

Punning riddles such as of the form “What do you get when you cross A and
B? C” usually incorporate at least two elements in both the question and the
answer, and the relationships between the elements are either semantic or
phonetic. The program for this riddle uses the WordNet semantic relations



and the CMU pronunciation dictionary, both included in NLTK, to generate,
given user input, a set of words or terms that exhibit such relationships. In
particular, it takes the user input (say, Al) and finds semantic relations of
it: synonyms, hypernyms, associated words, etc. For each relation (B1) a
homophone or near-homophone (B2) is found, and then semantic relations
of B2 are found (A2) to complete a set.

A good set of words generated should be able to be made into a pun-
ning riddle where the A’s are the elements of the question and the B’s are
the elements of the answer, combined in some form. This combination and
application to a template is to be implemented. Note: a near-homophone
is a word that is a limited number of phonetic changes away from a word.
Such words can be found either by iteration over a dictionary and using a
minimum-edit distance algorithm or by recursive generation of possible sim-
ilar words of the original and dictionary lookup.

3.2 “What do you get when you cross” generator

A programmer named Jess Johnson has one of the only available computa-
tional humor projects available, on his website [6]. His program, written in
Lisp, uses a user-written pre-prepared database of semantic and homophone
relations and a specific set of rules and methods to determine the precise
linguistic form for riddle generation. I have translated the entirety of that
code into the Python language, accomplishing the same results. However,
the methods used in that program reflect the same schematic method used
in [4] and other research projects in punning riddle generation. An example
of such a schema can be seen in Figure 1 After a schema is planned, it is
implemented in a program that finds a corresponding combination of words,
possibly by receiving input for one word to start. The steps after that in-
clude applying a proper template and correcting for surface features that may
need adjusting due to linguistic structures, e.g. the presence of indefinite arti-
cles. Johnson’s program provided for such template requirements. However,
the source [6] provided several possible improvements, e.g. “More complete
phonetic information,” and “More complete vocabulary. The vocabulary is
somewhat contrived.” Using the same resources as for my original punning
riddle program provides these improvements, and along with this existing

schema-template implementation, should result in a functional punning rid-
dle generator similar to projects like JAPE and STANDUP described earlier.



3.3 Palindromes

To generate any palindrome, the method is simple: pick any string and
append itself reversed. However, the goal of a useful palindrome generator
is to generate those that make sense in English. The first step to that goal
is to be able to generate palindromes made up entirely of valid words. The
main parts of the method to do this are a stack holding the current state of
the attempt and an algorithm to segment a string.

Random words are picked from a word list and added to the stack while
the string joining all the words in the current stack is reversed and stored as
the tail of the current state. After a word is added and the tail is created,
the segmentation algorithm is attempted on an iteration over each incremen-
tal substring by letter since the last added word. The points of successful
substring segmentation are kept in memory and used to determine when the
stack has gotten too big that the tail cannot be segmented into possible En-
glish words, at which point the stack is popped and new words are tried.
The algorithm is finished once the last successful tail substring segmentation
coincides with a word boundary, meaning the stack+tail combination forms
an English palindrome phrase.

3.4 Acronyms

To construct reanalyzed or new acronyms out of existing words, a given input
of a word or phrase serves two purposes. First, the letters of which constitute
it form the backbone of the acronym, so that the input is the acronym itself.
Second, the input is the seed for all the words or phrases which will be
possibilities to fill-in each letter slot in the acronym.

Those words can be of two sorts: semantically related words to the in-
put such as synonyms, hypernyms, or related concepts, or associated words,
i.e. those that describe it, are used frequently with it, or could otherwise
be relevant. The former are easier to retrieve because lexica such as Word-
Net readily contain functions returning such words. The latter, however,
are not readily available in any database. Therefore they are approximated
by accessing data such as dictionary definitions or encyclopedia articles and
empirically or heuristically determining which words are the most relevant.
Using a list of common English words, irrelevant or unuseful words are re-
moved to leave those which are probably associated with the input term.
Once a list of all such words are collected, they are picked according to first



letter to fit as many slots in the input acronym as possible.

4 Results, Expected Results, and Analysis

4.1 Punning Riddles

Currently the program succeeds in, given a starting word, finding a set of four
words or terms according to the schema given in Figure 1. More often than
not, an input word will generate at least one set. However, several problems
need to be addressed. The WordNet lexicon and the CMU pronouncing
dictionary it uses employs both British and American English words and
spellings, and for example in the case of homophones such distinctions can
lead to false selections of varations of the same word. Proper names, which
for the most part are not usable in the types of jokes analyzed here, are
included in WordNet as well. A slew of uncommon nouns, not suitable for
simple puns, are also present, giving rise to nonsensical or hard-to-understand
combinations. Furthermore, the the use of similarly pronounced words does
not restrict results to homophones or even rhymes, but includes words which
may not intuitively be considered as similar sounding to be used in a pun, e.g.
“wild” and “world”. An improvement to the pronunciation similarity method
could be to vary the strictness of similarity based on word lenght. Finally, sets
of words do not include pairs where one may be substituted into the other to
form a pun answer. As a result, the vast majority of generated sets currently
are not feasible to be inserted into a schema to make a punning riddle, for
example, “rabbit-;coney-;phony-;dissimulator.” Nevertheless, some sets can
conceivably be used, e.g. one result is “rabbit-; hare-;fair-; honest”, which,
fitting into the schema, can be made into a riddle such as “What do you call
an honest rabbit? A fair hare.”

The punning riddle program translated from LISP can reproduce the
original’s results using a specified, hard-coded set of words and relations.
For example, ”WHAT DO YOU GET WHEN YOU CROSS A COW WITH
A LEMON? sour milk” With adjustments, the program should be able to use
a non humor-specific lexicon and database and pick out appropriate words
to make jokes.



4.2 Palindromes

The output of the program is successful in that it can generate many palin-
dromes composed of valid English words. Over time, there does not appear
to be much of a slowing down due to lack of possibilities. However, a palin-
drome that makes either semantic or syntactic sense in English is rare among
those generated, since the algorithm takes no such other factors into account
other than spelling. A few example outputs of the program, both nonsensical
and acceptable:

e race car
e level level

e aidia

e 0on no

e fine too o o ten if

e once pattern ret ta pec no

e no ill im million

e red art trader

® never even

e test set

e oh whose hall action no it call a hes oh who

The apparent problem is the use of extremely obscure words as well as the
over-use of very common words. Also a problem is the fact that words are
not picked in any order to fit a syntactic structure, which leads to nonsense.
However, in some examples such as “red art trader,” the use of exclusively
nouns and adjectives (the vast majority of a lexicon anyway) does not prove
problematic. Nevertheless, an improvement would be some sort of model or
ruleset by which the program picks words other than at random in order to
yield more succesfully sensible palindromes.



4.3 Acronyms

The use of internet sources (primarily the OneLook dictionary website) to re-
trieve associated words to fill acronyms showed marked improvement (24.8Some
examples of the output:

e ORDER = Orderliness Rules Decree Edict Rescript
e BAD = Below Average Decency
e STUPID = Stunned

U nintelligentPersonD oltGOD=GravenOmnipotentDeity

BUSH = Born Under Sophistication Herbert
CIA = Collecting Independent Activities
CIA = Collecting Intelligence Abroad

LAW = Legal Activity N _ ~Although the success
WORD=Writingsof RestrictedDiscussion

of output is largely subjective, there are several levels of evaluation. First,
some tries leave blank spaces, and are immediately failures. Second, words
such as “order” may fill all spaces with related words, but may not make
sense otherwise. Some acronyms do get filled with phrases that make sense,
e.g. WORD above, but the phrases may not make sense in the context of
the word it forms (although they may, depending on the context in which
the acronym might be used, such as the title of a project or club). Finally,
several input words do yield acronyms that make sense, such as BAD and
CIA above. As with the palindrome generator, a possible improvement would
be to implement some syntactic rule set.

References

[14 Binsted, K., Bergen, B., Coulson, S., Nijholt, A., Stock, O., Strapparava,
C., ... Manurung, R. (2006). Computational Humor. Intelligent Systems,
21(2):59-69.

[2] Ritchie, G. (2005). Computational mechanisms for pun generation. In
Proceedings of the 10th European Natural Language Generation Work-
shop, pages 125132, Aberdeen.



3]

[4]

Ritchie, G. (2001). Current directions in computational humour. Artifi-
cial Intelligence Review, 16(2):119-135.

Binsted, K. and Ritchie, G. (1994). An implemented model of punning
riddles. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), pages 633-638, Seattle, USA.

Ritchie, G., Manurung, R., Pain, H., Waller, A., Black, R. and O’Mara,
D. (2007). A practical application of computational humour. In Pro-
ceedings of the 4th International Joint Conference on Computational
Creativity, pages 91-98, London.

Johnson, J. (2008, March 1). How to write original jokes
(or have a computer do it for you) [Web log post]. Re-
trieved from http://grok-code.com/12/how-to-write-original-jokes-or-
have-a-computer-do-it-for-you/

Stock, O. and Strapparava, C. (2005, June). HAHAcronym: A Compu-
tational Humor System. In Proceedings of the ACL Interactive Poster
and Demonstration Sessions, pages 113-116, Ann Arbor.

Puns and other word play. (2001, August 1). BBC - h2¢2.
http://www.bbc.co.uk/dna/h2g2/A592643



Moun Moun

A1 A2

related to
A}rp ernym, hyponym, or

ynonym of
@Hnun

|
B1 B2

Moun or
Adjectiv

Figure 1: Schema for the “What do you get when you cross” joke

10



