COMPUTER SYSTEMS RESEARCH
Portfolio Update 3rd Quarter 2009-2010
Research Paper, Poster, Slides, Coding, Analysis and Testing of your project's program.

Name: ___Vivaek Shivakumar_, Period: ___3__, Date: ___April 6, 2010

Project title or subject: __Pun and Word Game Generation
Computer Language: _Python__

Note: Now for full credit on all assignments you must provide specific plans and work using a degree of sophistication of algorithms and data structures at or beyond the level of APCS, AI 1/2, Parallel 1/2. Using shell programs or code available on the Web or in a book is not sufficient for full credit. You must provide actual development of your own code and research, analysis and testing of this code of your own. Be sure to list specific data structures, algorithms and coding you are doing at a sufficient level of sophistication for full credit. Also for full credit, you cannot merely repeat the same algorithms/data structures week after week – your program and your learning need to be evolving at a sophisticated level.

Describe the updates you have made to your research portfolio for 3rd quarter.

1. Research paper: Paste here new text you've added to your paper for 3rd quarter. Describe and include new images, screenshots, or diagrams you are using for 3rd quarter.

Specify text you've written for any of the following sections of your paper:

- Abstract

Talked about word play in general and not just puns, because that is what my code is about.

- Introduction or Background

\subsection{Word Play}

Various types of word play exist, such as acronyms and backronyms, palindromes, anagrams, spoonerisms, and puns.

Not much research exists on the generation of sophisticated and new instances of such word games, other than puns.

However, one project (Stock and Strapparava) [7] created HAHAcronym, a program to reanalyze existing acronyms by substituting

words to result in humorous interpretations, e.g. FBI = Fantastic Bureau of Intimidation.

Some examples of other types of word games:

\begin{itemize}

\item

Palindrome: A man, a plan, a canal- Panama!

\item

Anagram: ``Eleven plus two'' = ``Twelve plus one''

\end{itemize}

\par

- Development section(s) – the work you've actually done

\subsection{Punning Riddles}

Punning riddles such as of the form ``What do you get when you cross A and B? C'' usually incorporate at least two elements

in both the question and the answer, and the relationships between the elements are either semantic or phonetic.

The program for this riddle uses the WordNet semantic relations and the CMU pronunciation dictionary, both included in NLTK,

to generate, given user input, a set of words or terms that exhibit such relationships.

In particular, it takes the user input (say, A1) and finds semantic relations of it: synonyms, hypernyms, associated words,

etc.

For each relation (B1) a homophone or near-homophone (B2) is found, and then semantic relations of B2 are found (A2) to

complete a set.

\par

A good set of words generated should be able to be made into a punning riddle where the A's are the elements of the question

and the B's are the elements of the answer, combined in some form.

This combination and application to a template is to be implemented.

{\it Note:} a near-homophone is a word that is a limited number of phonetic changes away from a word.

Such words can be found either by iteration over a dictionary and using a minimum-edit distance algorithm or by recursive

generation of possible similar words of the original and dictionary lookup.

\par

\subsection{``What do you get when you cross'' generator}

A programmer named Jess Johnson has one of the only available computational humor projects available, on his website [6].

His program, written in Lisp, uses a user-written pre-prepared database of semantic and homophone relations and a specific

set of rules and methods to determine the precise linguistic form for riddle generation.

I have translated the entirety of that code into the Python language, accomplishing the same results.

However, the methods used in that program reflect the same schematic method used in [4] and other research projects in

punning riddle generation.
__

Johnson's program provided for such template requirements.

However, the source [6] provided several possible improvements, e.g. ``More complete phonetic information,'' and ``More

complete vocabulary. The vocabulary is somewhat contrived.''

Using the same resources as for my original punning riddle program provides these improvements, and along with this existing

schema-template implementation, should result in a functional punning riddle generator similar to projects like JAPE and

STANDUP described earlier.

\par

\subsection{Palindromes}

To generate any palindrome, the method is simple: pick any string and append itself reversed.

However, the goal of a useful palindrome generator is to generate those that make sense in English.

The first step to that goal is to be able to generate palindromes made up entirely of valid words.

The main parts of the method to do this are a stack holding the current state of the attempt and an algorithm to segment a

string.

\par

Random words are picked from a word list and added to the stack while the string joining all the words in the current stack

is reversed and stored as the tail of the current state.

After a word is added and the tail is created, the segmentation algorithm is attempted on an iteration over each incremental

substring by letter since the last added word.

The points of successful substring segmentation are kept in memory and used to determine when the stack has gotten too big

that the tail cannot be segmented into possible English words, at which point the stack is popped and new words are tried.

The algorithm is finished once the last successful tail substring segmentation coincides with a word boundary, meaning the

stack+tail combination forms an English palindrome phrase.

\par

\subsection{Acronyms}

To construct reanalyzed or new acronyms out of existing words, a given input of a word or phrase serves two purposes.

First, the letters of which constitute it form the backbone of the acronym, so that the input is the acronym itself.

Second, the input is the seed for all the words or phrases which will be possibilities to fill-in each letter slot in the

acronym.

\par

Those words can be of two sorts: semantically related words to the input such as synonyms, hypernyms, or related concepts, or

associated words, i.e. those that describe it, are used frequently with it, or could otherwise be relevant.

The former are easier to retrieve because lexica such as WordNet readily contain functions returning such words.

The latter, however, are not readily available in any database.

Therefore they are approximated by accessing data such as dictionary definitions or encyclopedia articles and empirically or

heuristically determining which words are the most relevant.

Using a list of common English words, irrelevant or unuseful words are removed to leave those which are probably associated

with the input term.

Once a list of all such words are collected, they are picked according to first letter to fit as many slots in the input

acronym as possible.

\par

- Results – if you're reaching any preliminary conclusions

\section{Results, Expected Results, and Analysis}

\subsection{Punning Riddles}

Currently the program succeeds in, given a starting word, finding a set of four words or terms according to the schema given

in Figure 1.

More often than not, an input word will generate at least one set.

However, several problems need to be addressed.

The WordNet lexicon and the CMU pronouncing dictionary it uses employs both British and American English words and spellings,

and for example in the case of homophones such distinctions can lead to false selections of varations of the same word.

Proper names, which for the most part are not usable in the types of jokes analyzed here, are included in WordNet as well.

A slew of uncommon nouns, not suitable for simple puns, are also present, giving rise to nonsensical or hard-to-understand

combinations.

Furthermore, the the use of similarly pronounced words does not restrict results to homophones or even rhymes, but includes

words which may not intuitively be considered as similar sounding to be used in a pun, e.g. ``wild'' and ``world''.

An improvement to the pronunciation similarity method could be to vary the strictness of similarity based on word lenght.

Finally, sets of words do not include pairs where one may be substituted into the other to form a pun answer.

As a result, the vast majority of generated sets currently are not feasible to be inserted into a schema to make a punning

riddle, for example, ``rabbit->coney->phony->dissimulator.''

Nevertheless, some sets can conceivably be used, e.g. one result is ``rabbit->hare->fair->honest'', which, fitting into the

schema, can be made into a riddle such as ``What do you call an honest rabbit? A fair hare.''

\par

The punning riddle program translated from LISP can reproduce the original's results using a specified, hard-coded set of

words and relations.

For example, "WHAT DO YOU GET WHEN YOU CROSS A COW WITH A LEMON? sour milk"

With adjustments, the program should be able to use a non humor-specific lexicon and database and pick out appropriate words

to make jokes.

\par

\subsection{Palindromes}

The output of the program is successful in that it can generate many palindromes composed of valid English words.

Over time, there does not appear to be much of a slowing down due to lack of possibilities.

However, a palindrome that makes either semantic or syntactic sense in English is rare among those generated, since the

algorithm takes no such other factors into account other than spelling.

A few example outputs of the program, both nonsensical and acceptable:

\begin{itemize}

\item

race car

\item

level level

\item

aid i a

\item

on no

\item

fine too o o ten if

\item

once pattern ret ta pec no

\item

no ill im million

\item

red art trader

\item

never even

\item

test set

\item

oh whose hall action no it call a hes oh who

\end{itemize}

The apparent problem is the use of extremely obscure words as well as the over-use of very common words.

Also a problem is the fact that words are not picked in any order to fit a syntactic structure, which leads to nonsense.

However, in some examples such as ``red art trader,'' the use of exclusively nouns and adjectives (the vast majority of a

lexicon anyway) does not prove problematic.

Nevertheless, an improvement would be some sort of model or ruleset by which the program picks words other than at random in

order to yield more succesfully sensible palindromes.

\par

\subsection{Acronyms}

The use of internet sources (primarily the OneLook dictionary website) to retrieve associated words to fill acronyms showed

marked improvement (24.8% to 55.2%) in the success rate of filling in letter slots over just using WordNet, and the results

also provided a greater range of vocabulary for acronyms that made slightly more sense.

Some examples of the output:

\begin{itemize}

\item

ORDER = Orderliness Rules Decree Edict Rescript

\item

BAD = Below Average Decency

\item

STUPID = Stunned ___ Unintelligent Person ___ Dolt

\item

GOD = Graven Omnipotent Deity

\item

BUSH = Born Under Sophistication Herbert

\item

CIA = Collecting Independent Activities

\item

CIA = Collecting Intelligence Abroad

\item

LAW = Legal Activity ___

\item

WORD = Writings of Restricted Discussion

\end{itemize}

Although the success of output is largely subjective, there are several levels of evaluation.

First, some tries leave blank spaces, and are immediately failures.

Second, words such as ``order'' may fill all spaces with related words, but may not make sense otherwise.

Some acronyms do get filled with phrases that make sense, e.g. WORD above, but the phrases may not make sense in the context

of the word it forms (although they may, depending on the context in which the acronym might be used, such as the title of a

project or club).

Finally, several input words do yield acronyms that make sense, such as BAD and CIA above.

As with the palindrome generator, a possible improvement would be to implement some syntactic rule set.

\par

- Additions to your bibliography

HAHAcronym paper by Stock and Strapparava
· images, screenshots, or diagrams in your paper

no new diagrams – the schema diagram
2. Poster: Copy in new text you've added to your poster for 3rd quarter.

List the titles you're using for each of your subsections. Include new text you're adding

- Subsection heading: ___________________ and text:

- Subsection heading: ___________________ and text:

- Subsection heading: ___________________ and text:

- images, screenshots, or diagrams in your poster.

3. Presentation slides: Provide a brief outline summarizing the main points of your presentation for 3rd quarter

· Background: How not much work has been done in generation of word play and puns.

-references some punning riddle generators, e.g. JAPE, STANDUP

- Development: How I am developing my project, using WordNet, schemas, algorithms

- Results: Some word play output that makes sense, much that does not,

- possible improvements

4. Coding: attach new code that you wrote 3rd quarter. Describe the purpose of this code in terms of your project's goal and research. Also provide clear commentary on the main sections of your code.

Anagrams.py: This program is the start to try to generate sensible English anagrams of a given word or phrase, e.g. “eleven plus two” == “twelve plus one”

Currently it handles single words

'''
Created on Mar 9, 2010
@author: Vivaek
'''
import re
def gen(str, d):

return
def look(str, d):

#see if str has any anagrams
 astr = alph(str)
 if astr in d:
 if len(d[astr])>1:
 temp = d[astr]
 temp.remove(str)
 return temp
 else:
 return ''
 else:
 return ''
def sortdic(l):

#make the hash of word->alphabetized, e.g
 d = {}

“computer”-> “cemoprtu”
 for i in xrange(len(l)):
 orig = l[i]
 new = alph(orig)
 if new in d:
 d[new].append(orig)
 else:
 d[new] = [orig]
 return d
def alph(str):
 s = list(str)
 s.sort()
 str = ''.join(s)
 return str
def prepdic():
 lfile = open("wordlist.txt")
 l = lfile.read().lower().split("\n")
 return l
l = prepdic()
d = sortdic(l)
while True:
 input = raw_input("Enter word, phrase, etc.: ")
 rxs = re.compile("['!\,\.?\"]")
 s = rxs.sub('',input)
 s = s.lower()
 print gen(s,d)
“Cross” Pun Generator: using semantic/phonetic information, generates a set of words that can be inserted into a template for a punning riddle

Def rels(input) uses WordNet to get word relations
The method “diff” evaluates the minimum edit cost between two arrays, namely the pronunciation arrays being compared from the cmudict.entries() database when creating the dictionary of similar sounding words.
possSims achieves this dictionary a different way, by recursively generating similarly pronounced words of a given word with a specified number of changes

from nltk.corpus import wordnet #@UnresolvedImport
from nltk.corpus import cmudict #@UnresolvedImport
import re
def rels(input):
 wordz = []
 for synset in wordnet.synsets(input):
 synsetName = synset.name
 if ".n." in synsetName or ".a." in synsetName or ".s." in synsetName:
 for syn in synset.lemmas:
 naam = syn.name
 try:
 if naam not in wordz and naam != input: wordz.append(naam)
 except AttributeError:
 if naam != input: wordz.append(naam)
 listList = [syn.hypernyms(),syn.instance_hypernyms(),syn.hyponyms(),
 syn.instance_hyponyms(),syn.member_holonyms(),syn.substance_holonyms(),
 syn.part_holonyms(), syn.member_meronyms(), syn.substance_meronyms(),
 syn.part_meronyms(),syn.attributes(),syn.pertainyms(),syn.similar_tos()]
 for list in listList:
 for lemma in list:
 lname = lemma.name
 try:
 if lname not in wordz and lname != input: wordz.append(lname)
 except AttributeError:
 if lname != input: wordz.append(lname)
 return wordz

def diff(a1,a2): #uses the minimum-cost distance (Levenshtein Distance)
 m = len(a1) #d has m+1 rows
 n = len(a2) # and n+1 columns
 d = []
 d.append(range(n+1)) #0th row filled and added
 for x in range(0,m):
 temp = [x+1]
 for y in range(1,n+1):
 temp.append(0)
 d.append(temp) #rest of rows added with the 0th column filled with its value
 for i in range(1,m+1):
 for j in range(1,n+1):
 c1 = a1[i-1]
 c2 = a2[j-1]
 re.sub('[0-9]+', '', c1)
 re.sub('[0-9]+', '', c2)
 #removes stress numbering for only comparing sounds
 if c1 == c2:
 d[i][j] = d[i-1][j-1]
 else:
 d[i][j] = min([d[i-1][j]+1,d[i][j-1]+1,d[i-1][j-1]+1]) #deleting, adding, and sub-ing a
 #letter, respectively
 return d[m][n]
def possSims(pron,n): #gives possible similarly pronounced words of a given word
 # with n allowed changes
 if n==0: return [pron]
 sims = []
 #deleting, adding, and substituting
 phonemes = ['AA','AE','AH','AO','AW','AY','B','CH','D','DH','EH','ER','EY','F','G','HH','IH','IY','JH','K','L','M','N','NG','OW','OY','P','R','S','SH','T','TH','UH','UW','V','W','Y','Z','ZH']
 for i in range(len(pron)):
 temp = pron[:]
 temp.pop(i)
 sims.append(temp)
 for phoneme in phonemes:
 temp = pron[:]
 temp.insert(i,phoneme)
 sims.append(temp)
 temp = pron[:]
 temp[i] = phoneme
 sims.append(temp)
 strsims = [' '.join(x) for x in sims]
 strsims = list(set(strsims))
 sims = [x.split(' ') for x in strsims]
 simscopy = sims[:]
 for simm in simscopy:
 sims.extend(possSims(simm,n-1))
 sims.append(pron)
 strsims = [' '.join(x) for x in sims]
 strsims = list(set(strsims))
 sims = [x.split(' ') for x in strsims]
 return sims
def makeDics(): #make pronunciation dictionaries
 wordPron = {}
 wordSims = {} # word maps to homophones and near homophones
 entries = cmudict.entries()
 kosh = dict(entries)
 prontoword = {}
 for shabd in kosh:
 soundz = ''.join(kosh[shabd])
 soundz = re.sub('[0-9]+', '', soundz) #removes stress numbering for only comparing sounds
 if soundz in prontoword: prontoword[soundz].append(shabd)
 else: prontoword[soundz] = [shabd]
 for word, pronArr in entries:
 pron = ' '.join(pronArr)
 pron = re.sub('[0-9]+', '', pron)
 pronArrm = pron.split(' ')
 if word not in wordSims:
 wordSims[word] = []
#O(N^2) METHOD
for w, pA in entries:
print word + "\t\t" + w
if w != word and abs(len(w)-len(word))<3:
difference = diff(pronArr,pA)
if difference<3:
wordSims[word].append(w)
 sims = possSims(pronArrm,1)
 for sim in sims:
 ssim = ''.join(sim)
 if ssim in prontoword:
 wordSims[word].extend(prontoword[ssim])
 if word in wordPron: wordPron[word].append(pron)
 else: wordPron[word] = [pron]
 return wordPron, wordSims
wp, ws = makeDics()
while True:
 word1 = raw_input("Enter word: ")
 relations = rels(word1)
 for rel in relations:
 if rel in wp:
 for homophone in ws[rel]: #(near homophone)
 if homophone != rel:
 hSyns = []
 for x in rels(homophone):
 if x not in hSyns: hSyns.append(x)
 for hSyn in hSyns:
 if hSyn.lower() != homophone:
 print word1+ "-->" + rel + " --> " + homophone + "-->" + hSyn
Palindromes: using a stack and a trial-error process similar to tree searching through the dictionary, generates valid English words segmented to form a palindrome – goal is to generate more not nonsensical ones

The segmentation algorithm (def segment(str):) recursively tries to split a string into valid English words without rearranging letters

'''
Created on Mar 9, 2010
@author: Vivaek
'''
import random
lfile = open("wordlist.txt") #file to generate words from
l = lfile.read().lower().split("\n")
mfile = open("wordlist1000.txt") #file to check words in segmentation
m = mfile.read().lower().split("\n")
def rev(str):
 temp = ""
 for char in str:
 temp = char + temp
 return temp
def segment(str):
 if str in m:
 return True, [str]
 i = 1
 while i<len(str):
 subs = str[0:i]
 if subs in m:
 works, seg = segment(str[i:])
 if works:
 seg.insert(0,subs)
 return True, seg
 i+=1
 return False, ""
totlen = 0
for item in l:
 totlen+=len(item)
maxlen = totlen/len(l) #(actually the average length - name leftover)
file = open("palindromeresults.txt") #file containing already-generated answers
answers = file.read().lower().split("\n")
while True:
 beg = []
 end = ""
 lastsegsuccess = 0
 lastsegsuccessstack = []
 lastseg = []
 tried = []
 triedstack = []
 while lastsegsuccess not in [len(end), len(end)-1] or lastsegsuccess == 0 or len(end)<1:
 new = l[random.randint(0,len(l)-1)]
 while new in tried:
 new = l[random.randint(0,len(l)-1)]
 beg.append(new)
 begs = ''.join(beg)
 end = rev(begs)
 for j in xrange(len(new)-1,-1,-1):
 substr = end[j:]
 success, segmentation = segment(substr)
 if success:
 lastsegsuccessstack.append(lastsegsuccess)
 lastsegsuccess = len(end)-j
 lastseg = segmentation
 if len(end)-lastsegsuccess >= maxlen:
 tried.append(beg.pop())
 begs = ''.join(beg)
 end = rev(begs)
 while len(tried)>5 and len(beg)>0: #############################adjustable parameter up to len(l)
 if len(triedstack)>0:
 tried = triedstack.pop()
 tried.append(beg.pop())
 else:
 tried = [beg.pop()]
 begs = ''.join(beg)
 end = rev(begs)
 else:
 triedstack.append(tried)
 tried = []
 while lastsegsuccess>len(end) and len(lastsegsuccessstack)>0:
 lastsegsuccess = lastsegsuccessstack.pop()
 if lastsegsuccess > len(end): lastsegsuccess = 0
 tempans = ' '.join(beg) + ' ' + ' '.join(lastseg)
 if tempans not in answers:
 print tempans
 answers.append(tempans)

Acronym Generator: Using WordNet related words of an input as well as words taken from dictionary definitions online (for a broader semantic base) – tries to fill in the letters of the input with such words, thus attempting to generate an acronym that is related to the entry
The two methods get the relations, and the main part just fills in as much as possible of the acronym space
import re
import random
from nltk.corpus import wordnet #@UnresolvedImport
import urllib
def internetwords(input):
 wordz = []
 commonwords = open("common.txt").read().split("\n")
 for i in xrange(len(commonwords)):
 if commonwords[i][-1]==" ": commonwords[i] = commonwords[i][:-1]
 page_text = urllib.urlopen("http://www.onelook.com/?w="+input+"&ls=a").read()
 if "Quick definitions" in page_text:
 temp = page_text.split("<span id=\"easel_def_off_")
 temp = temp[1:]
 rxs = re.compile("['!\,\.?;()\"]")
 for item in temp:
 defin = item[item.find(">")+1:item.find("<")]
 d = rxs.sub('',defin)
 words = d.split(" ")
 wordz.extend(words)
 for w in commonwords:
 while w in wordz:
 wordz.remove(w)
 return wordz
def rels(input): # gives the relations of a given words including synonyms, hyponyms, etc.
 wordz = []
 for synset in wordnet.synsets(input):
 synsetName = synset.name
 if ".n." in synsetName or ".a." in synsetName or ".s." in synsetName:
 for syn in synset.lemmas:
 naam = syn.name
 try:
 if naam not in wordz and naam != input: wordz.append(naam)
 except AttributeError:
 if naam != input: wordz.append(naam)
 listList = [syn.hypernyms(),syn.instance_hypernyms(),syn.hyponyms(),
 syn.instance_hyponyms(),syn.member_holonyms(),syn.substance_holonyms(),
 syn.part_holonyms(), syn.member_meronyms(), syn.substance_meronyms(),
 syn.part_meronyms(),syn.attributes(),syn.pertainyms(),syn.similar_tos()]
 for list in listList:
 for lemma in list:
 lname = lemma.name
 try:
 if lname not in wordz and lname != input: wordz.append(lname)
 except AttributeError:
 if lname != input: wordz.append(lname)
 return wordz
##
#wordlist = open("wordlist1000.txt").read().lower().split("\n")
while True:
#successes = 0
#total = 0
#for iteration in xrange(100):
word1 = wordlist[random.randint(0,len(wordlist)-1)]
word2 = wordlist[random.randint(0,len(wordlist)-1)]
input = word1 + " " + word2
 input = raw_input("Enter a string: ")
 rxs = re.compile("['!\,\.?\"]")
 rx= re.compile("[!?\"\,\.]")
 words = rx.sub('',input).split(' ')
 s = rxs.sub('',input)
 s = s.lower()
 relwords = {}
 for word in words:
 related = rels(word)
 related.extend(internetwords(word))
 for relword in related:
 if len(relword)>0:
 relword = relword.lower()
 if relword[0] in relwords.keys(): #if the first letter key is there
 relwords[relword[0]].append(relword)
 else:
 relwords[relword[0]] = [relword]
 if '_' in relword: #takes constituents of compound words as 'related words' themselves
 for subword in relword.split('_'):
 if subword[0] in relwords.keys(): #if the first letter key is there
 relwords[subword[0]].append(subword)
 else:
 relwords[subword[0]] = [subword]
 for let in relwords:
 temp = relwords[let]
 temp = list(set(temp))
 relwords[let] = temp
 for word in words:
 templet = word[0]
 if templet in relwords:
 while word in relwords[templet]:
 relwords[templet].remove(word)
 for letter in s:
 #total+=1
 aword = ''
 if letter in relwords.keys():
 # successes+=1
 i = random.randint(0,len(relwords[letter])-1)
 aword = relwords[letter][i]
 print letter + ": " + aword
#print successes
#print total

TRANSLATED CODE from Lisp to Python – the original Lisp code uses given, hardcoded relations, etc. for the machine to generate jokes, and tries every combination – this program is a translation of that, and will be modified for improvement of word-finding methods

- the headers above methods explain the function (worded by the original author)

#Courtesy of Jess
#http://grok-code.com
debug = False
test_know = False
vocab = {} #holds world knowledge
literal_list = [] #this is the key list for *vocab*
 #the two data structures should be kept consistent
punchline = {} #holds punchlines of jokes that have already been told
class WordProp:
 def __init__(self, literal=None, relation=[], homophone=[], POS=None, anim=None, art=None):
 self.literal = literal
 self.relation = relation
 self.homophone = homophone
 self.POS = POS
 self.anim = anim
 self.art = art
Add a word to the vocab-list if it isn't already there
If the POS in unspecified, it defaults to 'n (noun)
Other acceptable parts of speech are 'm (modifier), 'b (both), 'x (neither)
anim (animated) can be 't (true) 'f (false) 'b (both), the default is 'f
art (article) can be 't (true) or 'f (false), the default is 't
def add_word(literal, POS = 'n', anim='f', art=True):
 add = False
 if literal in vocab and vocab[literal] is None: add = True
 if literal not in vocab: add = True
 if add:
 vocab[literal] = WordProp(literal=literal,POS=POS,anim=anim,art=art)
 literal_list.append(literal)
 return
def add_relation(literal1,literal2,POS1='n',POS2='n',anim1='f',anim2='f',art1=True,art2=True):
 add_word(literal1, POS=POS1,anim=anim1,art=art1)
 add_word(literal2, POS=POS2,anim=anim2,art=art2)
 word_prop1 = vocab[literal1]
 word_prop2 = vocab[literal2]
 temp1 = [word_prop1]
 temp1.extend(word_prop2.relation)
 temp1 = list(set(temp1))
 temp2 = [word_prop2]
 temp2.extend(word_prop1.relation)
 temp2 = list(set(temp2))
 word_prop2.relation = temp1 #??
 word_prop1.relation = temp2
 return
def add_homophone(literal1,literal2,POS1='n',POS2='n',anim1='f',anim2='f',art1=True,art2=True):
 add_word(literal1, POS=POS1,anim=anim1,art=art1)
 add_word(literal2, POS=POS2,anim=anim2,art=art2)
 word_prop1 = vocab[literal1]
 word_prop2 = vocab[literal2]
 temp1 = [word_prop1]
 temp1.extend(word_prop2.homophone)
 temp1 = list(set(temp1))
 temp2 = [word_prop2]
 temp2.extend(word_prop1.homophone)
 temp2 = list(set(temp2))
 word_prop2.homophone = temp1
 word_prop1.homophone = temp2
 return
use some common grammer rules to add suffixes to the literal, return a list of possible words
def add_suffix(word_prop):
 if is_POS('n',word_prop):
 return [WordProp(literal =word_prop.literal+'s', POS=word_prop.POS,anim=word_prop.anim)]
 return []
returns relations of the literal, and relations of the literal with common sufixes,
the return list is made of word-props
the input is a string literal
def derive_words(lit):
 if lit is None or lit == '': return []
 elif lit not in vocab or vocab[lit] is None: return add_suffix(WordProp(literal=lit))
 else:
 temp = vocab[lit].relation
 temp2 = temp
 new_list = []
 for thing in temp2:
 new_list.extend(add_suffix(thing))
 temp.extend(new_list)
 return temp
def add_article(str):
 if str[0] in "aeiouAEIOU":
 return 'an '+str
 else:
 return 'a '+str
def print_joke(word1,word2,mod1,mod2,answer):
 start = "What do you get when you cross "
 mid = " with "
 end = "?"
 a1, a2 = "", ""
 if word1 in vocab:
 if vocab[word1].art: #article
 if mod1 is not None and mod1 != '': #mod
 a1 = add_article(mod1+' '+word1)
 else: #no mod
 a1 = add_article(word1)
 else: #no article
 if mod1 is not None and mod1 != '': #mod
 a1 = mod1+' '+word1
 else: #no mod
 a1 = word1
 if word2 in vocab:
 if vocab[word2].art: #article
 if mod2 is not None and mod2 != '': #mod
 a2 = add_article(mod2+' '+word2)
 else: #no mod
 a2 = add_article(word2)
 else: #no article
 if mod2 is not None and mod2 != '': #mod
 a2 = mod2+' '+word2
 else: #no mod
 a2 = word2
 question = start + a1 + mid + a2 + end
 print question
 print
 print answer
 print
 print
 return
Add some knowledge, so we can turn it into jokes
def seed_knowledge_test():
 add_relation("parrot","polly",anim1='t',anim2='t')
 add_relation("cat","puss",anim1='t',anim2='t')
 add_word("carrot")
 add_word("super",POS='m',anim='b')
 add_word("dupe",POS='m', anim='b')
 add_word("duper",POS='m',anim='b')
 return
Add some knowledge, so we can turn it into jokes
def seed_knowledge():
 add_relation("cheetah","fast",POS2='m',anim1='t',anim2='t')
 add_relation("cheetah","spots",anim1='t')
 add_relation("elephant","trunk",anim1='t')
 add_relation("hamburger","food")
 add_relation("hamburger","meat",art2=False)
 add_relation("dance","ball",anim2='b')
 add_relation("galaxy","star",anim2='b')
 add_relation("murderer","killer",anim1='t',anim2='t')
 add_relation("toad","warts",anim1='t',art2=False)
 add_relation("strawberry","jam",anim2='b',art2=False)
 add_relation("road","traffic")
 add_relation("bell","ding")
 add_relation("cow","milk",anim1='t',art2=False)
 add_relation("duck","quack",anim1='t',anim2='b')
 add_relation("bank","dollars",art2=False)
 add_relation("skunk","scent",anim1='t')
 add_relation("ninja","chops",anim1='t',anim2='t')
 add_relation("assistant","aide",anim1='t',anim2='b')
 add_relation("pig","pork",anim1='t')
 add_relation("cat","puss",anim1='t',anim2='t')
 add_relation("lemon","sour",POS2='m',anim2='b')
 add_relation("rabbit","hare",anim1='t',anim2='t')
 add_relation("lawn sprinkler","spray")
 add_relation("cemetery","grave yard")
 add_relation("mad","crazy",POS1='m',POS2='m',anim1='t',anim2='t')
 add_relation("mad","angry",POS1='m',POS2='m',anim1='t',anim2='t')
 add_relation("cap","hat")
 add_relation("ant","bug",anim1='t',anim2='t')
 add_relation("aunt","relative",anim1='t',anim2='t')
 add_relation("parent","relative",anim1='t',anim2='t')
 add_relation("scared","afraid",POS1='m',POS2='m',anim1='t',anim2='t')
 add_relation("rabbit","hopping",POS2='m',anim1='t',anim2='t')
 add_relation("rabid","frothing",POS1='m',POS2='m',anim1='t',anim2='t')
 add_relation("cereal","Frosted Flakes",art2=False)
 add_relation("boy","young man",anim1='t',anim2='t')
 add_relation("parrot","polly",anim1='t',anim2='t')
 add_relation("flower","poppy")
 add_relation("jelly","jam",art1=False,art2=False)
 add_relation("fish","trout",anim1='t',anim2='t')
 add_relation("grave","serious",POS1='b',POS2='m',anim1='t',anim2='t')
 add_relation("thief","robber",anim1='t',anim2='t')
 add_relation("grave","serious",POS1='b',POS2='m',anim1='b',anim2='t')
 add_relation("music","band",anim2='b',art1=False)
 add_relation("pea","vegetable",anim2='b')
 add_relation("centipede","legs",anim1='t',anim2='t',art2=False)
 add_relation("einstein","relative",anim1='t',anim2='t',art1=False)
 add_relation("jacket","coat")
 add_relation("fire","hot",POS2='m')
 add_relation("electricity","power",art1=False,art2=False)
 add_relation("pond","lake")
 add_relation("rain","wet",POS2='m',art1=False)
 add_relation("alcohol","drunk",POS2='b',anim2='t')
 add_relation("rabbit","bunny",anim1='t',anim2='t')
 add_relation("car","automobile")
 add_relation("country","nation")
 add_relation("beach","sand",art2=False)
 add_relation("dog","ruff",anim1='t',POS2='x')
 add_relation("cat","mew",anim1='t',POS2='x')
 add_relation("cat","purrr",anim1='t',POS2='x')
 add_relation("sandpaper","rough",POS2='m',art1=False)
 add_relation("radio","music",art2=False)
 add_relation("tune","music",art2=False)
 add_relation("chicken","egg",anim1='t')
 add_relation("extraterrestrial","alien",anim1='b',anim2='t')
 add_relation("finals","exams",art1=False,art2=False)
 add_relation("port","serial",POS2='m')
 add_homophone("cereal","serial",POS2='m')
 add_homophone("hare","hair",anim1='t',art2=False)
 add_homophone("wars","warts",art1=False,art2=False)
 add_homophone("cents","scents",art1=False,art2=False)
 add_homophone("afraid","frayed",POS2='m',anim1='t',anim2='b')
 add_homophone("parent","apparent",POS2='m',anim1='t')
 add_homophone("band","banned",POS2='m',anim1='b',anim2='t')
 add_homophone("ant","aunt",anim1='t',anim2='t')
 add_homophone("rabbit","rabid",POS2='m',anim1='t',anim2='t')
 add_homophone("puppy","poppy",anim1='t')
 add_homophone("cracker","quacker",POS2='m',anim2='t')
 add_homophone("peas","peace")
 add_homophone("son","sun")
 add_homophone("tune","toon",POS2='x')
 add_homophone("witch","which",anim1='t',POS2='x')
 add_homophone("rough","ruff",POS1='m',POS2='x')
 add_homophone("mew","mu",POS1='x',POS2='x')
 add_homophone("purrr","per",POS1='x',POS2='x')
 add_homophone("purrr","pur",POS1='x',POS2='x')
 add_homophone("eggs","ex",POS2='x',art1=False)
 add_homophone("ade","aide",POS1='x',anim2='t')
 add_homophone("aid","aide",POS1='x',anim2='t')
 add_word("canned",POS='m',anim='b')
 add_word("cow bell")
 add_word("pig headed",POS='m',anim='t')
 add_word("star wars",art=False)
 add_word("sour puss",anim='t')
 add_word("traffic jam")
 add_word("dingbat",anim='t')
 add_word("milk and crackers",art=False)
 add_word("carrot")
 add_word("pork chops",art=False)
 add_word("fast food",art=False)
 add_word("dollars and cents",art=False)
 add_word("lemonade",art=False)
 add_word("hair spray",art=False)
 add_word("mad hatter",anim='t')
 add_word("hopping mad",POS='m',anim='t')
 add_word("serial killer",anim='t')
 add_word("boycrazy",POS='m',anim='t')
 add_word("flower power")
 add_word("jellyfish",anim='t')
 add_word("grave robber",anim='t')
 add_word("sour balls",art=False)
 add_word("fastball")
 add_word("sour milk",art=False)
 add_word("bandaid")
 add_word("peas and carrots",art=False)
 add_word("peace and quiet",art=False)
 add_word("war and peace",art=False)
 add_word("raincoat")
 add_word("fireman")
 add_word("pancake")
 add_word("cupcake")
 add_word("butterfly")
 add_word("milkman",anim='t')
 add_word("doorbell")
 add_word("sunshine")
 add_word("bad",POS='m',anim='t')
 add_word("belly")
 add_word("boat")
 add_word("cake")
 add_word("drunk",POS='b',anim='t')
 add_word("fake",POS='m')
 add_word("jolly",POS='m',anim='t')
 add_word("mare",anim='t')
 add_word("bugs bunny",anim='t',art=False)
 add_word("cartoon")
 add_word("carnation")
 add_word("sandwich")
 add_word("snowball")
 add_word("snowman")
 add_word("excited",POS='m',anim='t')
 add_word("purple",POS='m',anim='b')
 add_word("person",anim='t')
 literal_list.sort(key=len)
 return
adds the the punchline
def add_punchline(str):
 if str in punchline: punchline[str]+=1
 else: punchline[str] = 1
 return
see if we can combine words by using substrings: cat + parrot = carrot
args and return value are strings
the suffix is always taken from the shorter word
def make_substring_word(word1,word2,pos=None):
 if len(word1)<=len(word2):
 small_str = word1
 big_str = word2
 else:
 small_str = word2
 big_str = word1
 #chair + parrot != carrot
 multi_starts = ['thr','th','ch','str','st','spr','sp','tr','sc','gr','fl','fr']
 not_found = True
 suffix = ''
 for start in multi_starts:
 if small_str.find(start)==0:
 not_found = False
 suffix = start
 if not_found: suffix = small_str[0]
 big_copy = big_str
 big_copy.lstrip(big_copy[0])
 new_str = suffix + big_copy
 if new_str in vocab:
 if is_POS(pos,vocab[new_str]) and new_str != small_str and new_str != big_str:
 return new_str
 return None
 return None
returns true if word-prop can be that kind of speech
def is_POS(pos, word_prop):
 if pos == '' or pos is None: return True
 if pos == 'b' and word_prop.POS != 'x': return True
 if (word_prop is not None and word_prop is not '') and (word_prop.POS == pos): return True
 return False
takes strings or word-props returns true if they have they same animated quatlity
def anim_match(str1,str2):
 w_prop1 = None
 if isinstance(str1,WordProp): w_prop1 = str1
 else: w_prop1 = vocab[str1]
 if isinstance(str2,WordProp): w_prop2 = str2
 else: w_prop2 = vocab[str2]
 return ((w_prop1 is None) or (w_prop2 is None) or (w_prop1.anim == 'b') or (w_prop2.anim == 'b')
 or (w_prop1.anim == w_prop2.anim))
arg words should be strings
returns a word-prop formed by combining the two arg words
the word-prop-literal may contain words that are homophones of known words.
def make_compound(word1,word2,pos=None):
 ho_list1 = [word1]
 if word1 in vocab:
 homophone_w1 = vocab[word1].homophone
 new_list1 = []
 for thing in homophone_w1: new_list1.append(thing.literal)
 ho_list1.extend(new_list1)
 ho_list2 = [word2]
 if word2 in vocab:
 homophone_w2 = vocab[word2].homophone
 new_list2 = []
 for thing in homophone_w2: new_list2.append(thing.literal)
 ho_list2.extend(new_list2)
 answer = None
 if word2 in vocab:
 if vocab[word2] is not None and is_POS(pos,vocab[word2]):
 if len(ho_list1)>1:
 for h1 in ho_list1[1:]:
 if len(word2) > len(h1) and word2.find(h1)==0:
 if word2[len(h1)] == ' ': #there is a space at the break point
 answer = WordProp(literal=''+word1+word2[len(h1)],POS=vocab[word2].POS,anim=vocab[word2].anim)
 else:
 answer = WordProp(literal=''+word1+'-'+word2[len(h1)],POS=vocab[word2].POS,anim=vocab[word2].anim)
 if word1 in vocab:
 if vocab[word1] is not None and is_POS(pos,vocab[word1]):
 if len(ho_list2)>1:
 for h2 in ho_list2[1:]:
 if len(word1) > len(h2) and word1.find(h2)==0:
 if word1[len(h2)] == ' ': #there is a space at the break point
 answer = WordProp(literal=''+word2+word1[len(h2)],POS=vocab[word1].POS,anim=vocab[word1].anim)
 else:
 answer = WordProp(literal=''+word2+'-'+word1[len(h2)],POS=vocab[word1].POS,anim=vocab[word1].anim)
 for h1 in ho_list1:
 for h2 in ho_list2:
 if answer is None or answer == '':
 hash = None
 if (h1+' and '+h2) in vocab:
 hash = vocab[h1+' and '+h2]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word1+' and '+word2,POS=hash.pos,anim=hash.anim)
 if (h2+' and '+h1) in vocab:
 hash = vocab[h2+' and '+h1]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word2+' and '+word1,POS=hash.pos,anim=hash.anim)
 if (h1+' and '+h2) in vocab:
 hash = vocab[h1+' and '+h2]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word1+' and '+word2,POS=hash.pos,anim=hash.anim)
 if (h2+' and '+h1) in vocab:
 hash = vocab[h2+' and '+h1]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word2+' and '+word1,POS=hash.pos,anim=hash.anim)
 if (h1+' and '+h2) in vocab:
 hash = vocab[h1+' and '+h2]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word1+' and '+word2,POS=hash.pos,anim=hash.anim)
 if (h2+' and '+h1) in vocab:
 hash = vocab[h2+' and '+h1]
 if hash is not None and is_POS(pos,hash):
 answer = WordProp(literal=word2+' and '+word1,POS=hash.pos,anim=hash.anim)
 return answer
returns a string that will answer the joke, if possible
word1 and word2 are strings
mod1 and mod2 are strings or nil if no modifier
def answer_joke(word1,word2,mod1,mod2):
 derive_word1 = derive_words(word1)
 derive_word2 = derive_words(word2)
 derive_mod1 = derive_words(mod1)
 derive_mod2 = derive_words(mod2)
 answer = ''
 answer_val = 0 # heuristic for how good the joke is -- funniest is 10
 threshold = 5 # jokes with answer-val strictly less than threshold aren't considered funny, and won't be returned
 if debug:
 print "answer_joke: " + mod1 + " " + word1 + " and " + mod2 + " " + word2 + "\n"
 #no modifiers
 if (mod1 is None or mod1 == '') and (mod2 is None or mod2 == ''):
 for d1 in derive_word1:
 for d2 in derive_word2:
 a = make_compound(d1.literal,d2.literal)
 if a is not None:
 if is_POS('m',a):
 answer = "I don't know, but it's " + a.literal
 elif is_POS('n',a):
 answer = a.literal
 answer_val = 10 # found answer with N compound
 homophone_d2 = d2.homophone
 new_temp_list = []
 for thing in homophone_d2:
 new_temp_list.append(thing.literal)
 if 8>answer_val and 8>=threshold and (d1.literal in new_temp_list):
 ans_prop = None
 if is_POS('x',d1): ans_prop = d1
 elif is_POS('x',d2): ans_prop = d2
 elif is_POS('b',d1): ans_prop = d1
 elif is_POS('b',d2): ans_prop = d2
 elif is_POS('m',d1): ans_prop = d1
 elif is_POS('m',d2): ans_prop = d2
 else: ans_prop = d1
 ans_phrase = None
 if is_POS('m',d1) or is_POS('m',d2): ans_phrase = 'm'
 if ans_phrase is not None:
 answer = "I don't know, but it's " + ans_prop.literal
 else:
 answer = ans_prop.literal
 answer_val = 8 # found an answer where the 2 derived words are a homophone pair
 if 3>answer_val and 3>=threshold:
 answer = make_substring_word(word1,word2,pos='n')
 if answer is not None:
 answer_val = 3 #found answer N with a substring match
 if 3>answer_val and 3>=threshold:
 for d1 in derive_word1:
 for d2 in derive_word2:
 if is_POS('m',d1) and is_POS('n',d2):
 answer = d1.literal + ' ' + d2.literal
 answer_val = 3
 elif is_POS('m',d2) and is_POS('n',d1):
 answer = d2.literal + ' ' + d1.literal
 answer_val = 3 # found answer with an MN
 # 1 modifier
 elif (mod1 is None or mod1 == '') or (mod2 is None or mod2 == ''):
 if mod1 is None or mod1 == '':
 mod1,mod2 = mod2,mod1
 word1,word2 = word2,word1
 derive_mod1, derive_mod2 = derive_mod2, derive_mod1
 derive_word1, derive_word2 = derive_word2, derive_word1
 if 7>answer_val and 7>=threshold:
 for d in derive_word2:
 temp = []
 if word1 in vocab: temp.append(vocab[word1])
 temp.extend(derive_word1)
 for d_word in temp:
 temp_mcword = make_compound(d.literal,d_word.literal)
 if temp_mcword is not None:
 temp = []
 if mod1 in vocab: temp.append(vocab[mod1])
 temp.extend(derive_mod1)
 for d_mod in temp:
 temp_mcmod = make_compound(d.literal,d_mod.literal)
 if temp_mcmod is not None:
 a1 = temp_mcword
 a2 = temp_mcmod
 if is_POS('m',a1) and is_POS('n',a2):
 answer = a1.literal + ' ' + a2.literal
 answer_val = 8
 if is_POS('m',a2) and is_POS('n',a1):
 answer = a2.literal + ' ' + a1.literal
 answer_val = 8
 if is_POS('m',a1) and is_POS('m',a2):
 answer = "I don't know, but it's " + a1.literal + " and " + a2.literal
 answer_val = 8
 if is_POS('n',a1) and is_POS('n',a2):
 answer = a1.literal + ' and ' + a2.literal
 answer_val = 8
 # 2 modifiers
 else:
 a1 = make_substring_word(word1,word2,pos='m')
 a2 = make_substring_word(mod1,mod2,pos='n')
 if a1 is not None and a2 is not None and anim_match(vocab[a1],vocab[a2]) and len(word1)<=len(word2) and len(mod1)<=len(mod2):
 answer = a1 + ' ' + a2
 answer_val = 8 #made M N, both formed with substrings
 if 8>answer_val and 8>=threshold:
 a1 = make_substring_word(word1,word2,pos='n')
 a2 = make_substring_word(mod1,mod2,pos='m')
 if a1 is not None and a2 is not None and anim_match(vocab[a1],vocab[a2]) and len(word1)<=len(word2) and len(mod1)<len(mod2):
 answer = a2 + ' ' + a1
 answer_val = 8 #made M N, both formed with substrings
 if 8>answer_val and 8>=threshold:
 ans_list1 = None
 ans_list2 = None
 for d in derive_word1:
 for m in derive_mod1:
 tmp = make_compound(d.literal,m.literal)
 if tmp is not None:
 ans_list1.extend([tmp])
 for d in derive_word2:
 for m in derive_mod2:
 tmp = make_compound(d.literal,m.literal)
 if tmp is not None:
 ans_list2.extend([tmp])
 if ans_list1 is not None and ans_list2 is not None:
 for a1 in ans_list1:
 for a2 in ans_list2:
 if is_POS('m',a1) and is_POS('m',a2):
 answer = "I don't know, but it's " + a1.literal + " and " + a2.literal
 answer_val = 8
 elif is_POS('n',a1) and is_POS('m',a2) and anim_match(a1,a2):
 answer = a2.literal + " " + a1.literal
 answer_val = 8
 elif is_POS('m',a1) and is_POS('n',a2) and anim_match(a1,a2):
 answer = a1.literal + " " + a2.literal
 answer_val = 8
 # the joke loses "funny points" if the answer and question contain the same word
 if word1 in answer: answer_val -= 4
 if word2 in answer: answer_val -= 4
 if mod1 in answer: answer_val -= 4
 if mod2 in answer: answer_val -= 4
 # it also loses points if the punchline has been used before
 if answer in punchline:
 answer_val-= 4*punchline[answer]
 # only return joke if it is funny enough
 if answer_val >= threshold:
 add_punchline(answer) # record the punchline so it is less likely to be used again
 #record the elements of the question so we don't get more jokes with the question
 # and the punchline switched
 if mod1 is not None: add_punchline(mod1+' '+word1)
 if mod2 is not None: add_punchline(mod2+' '+word2)
 return answer
 return ''
#iterates through the vocabulary, tries to answer a joke for each pair of vocabulary words
def generate():
 if test_know:
 seed_knowledge_test()
 else:
 seed_knowledge()
 # answer jokes for M_1 N_1, M_2 N_2 pairs, where N is a noun, M is a modifier N_1 != N_2
 # modifiers may be null
 literals = literal_list[1:]
 word1 = literals[0]
 while len(literals)>1:
 if is_POS('n', vocab[word1]):
 for word2 in literals[1:]:
 if is_POS('n',vocab[word2]):
 literals_m = literal_list
 mod1 = literals_m[0]
 while len(literals_m)>1:
 if (mod1 == '' or is_POS('m', vocab[mod1])) and anim_match(word1,mod1):
 #animated qualities have to match -- "serious lemon" is not allowed
 literal_list_cdr = literal_list[1:]
 for mod2 in literal_list_cdr:
 if (mod2 == '' or is_POS('m',vocab[mod2])) and anim_match(word2,mod2):
 #animated qualities
 answer = answer_joke(word1,word2,mod1,mod2)
 if answer is not None and answer is not '':
 print_joke(word1,word2,mod1,mod2,answer)
 literals_m = literals_m[1:]
 mod1 = literals_m[0]
 literals = literals[1:]
 word1 = literals[0]
 return
def main():
 generate()
if __name__ == "__main__":
 main()
 5. Testing, Analysis – specific listings/descriptions of the tests and analysis you've done this

 quarter.

Since many word games/puns are subjective in terms of evaluation, quantifying results is hard.
However I did perform two experiments.

In one, I evaluated the success rate improvement of the acronym generator when using Internet sources against not using them, and the improvement was from 24.8% to 55.2%.

In the other, I tried to see how well it did with two word inputs as opposed to one, and the improvement was from 62% to 81.4%.

Testing the palindrome generator, I found that it produces many combinations at first and slows down, so I tested to see if the program would halt or slow significantly when not allowed to produce duplicates over time. The program continued , slightly more slowly, to produce palindromes and it seems that the time period to run out would be very long.

Some examples of successful palindromes generated:

race car
turn rut

case sac

wall law

record roc-er

six xis

red art trader

never even

test set

no ill im million

…
5. Running your project – describe what your project's program actually does in it's current stage. Include current analysis and testing you're doing. Specifically what have you done this quarter.

Currently each program produces low-level but successful results for its particular type of word game and the “cross” pun generator can generate sets of four words based on inputs. However, the intelligence of the programs is low due to the type and number of resources they access, as well as lack of filtering of results.
I have pretty much done all of it this quarter.
6. What is your focus for wrapping up your project for 4th quarter?

I will have to get as far as I can in making this programs more sophisticated and successful, and work on accessing more and better resources for higher success rates. I will also be looking to code for applying templates to the word sets generated to actually produce question riddles. As to the Lisp program translated, I will improve it by having it use databases I can find and utilize instead of given relations; the problem to solve there will be efficiency and searching.
