COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: __Raghav Bashyal__, Period: __04_

2. Date of this version of your program: _June 15, 2010___

3. Project title: ___Statistical Machine Translation (Spanish to English)____

4. Describe how your program runs as of this version. Include

-- files that may be needed

Corpuses: “cosas,” “monkey”

NLTK installation

-- algorithms, specific procedures or methods you wrote

Simple SMT two-part algorithm:

1. Match

a. Take small Spanish input

b. Look through the corpus to find instances of the input

c. Collect the Spanish sentences in which this input was found, as well as the English translation right below each sentence

d. Compare the English sentences to discover similar words

e. Find the most common similar words and find permutations of them

2. Check

a. Gather bigram values for each permutation using the bigram function

b. Calculate the probabilities for each permutation with Knight’s formula

e. Return the most probable permutation as the most likely simple translation

-- kinds of input your program uses

Initial input text, can be adjusted in program

-- screenshots, what kinds of output does your program have

Bare-bones, print-command printout

-- does your program handle errors, or does it crash on errors of input?

Because a larger corpus was unavailable, there were not many opportunities to test the algorithm. However, the program works when presented with words that exist in the small corpuses.

-- tests: summarize the basic analysis and testing of this version of your program

This investigation of Statistical Machine Translation yielded a deeper understanding of translation programs like that of Google translate – a tool that has a world of data to analyze to find the most current and actual translation. The algorithm that was implemented was a success, and, despite its simplicity, may be useful in teaching someone about SMT or could be elaborated upon or included in a bigger picture.

The actual test of the implementation of the algorithm was conducted with two simple corpuses, “cosas” and “monkey,” and the translating task being “el mono” (“the monkey”). The code was able to go through at every step and return the right answer.

import nltk;

from nltk.tokenize import *;

from nltk.corpus import PlaintextCorpusReader;

import pprint;

from array import array;

#from nltk.book import *;

from string import *;

#----

sents = [] #sentences in spanish corpora separated sentence by sentence

f = open('usr_corpora/cosas');

raw = f.read()

sents = raw.split('\n')

print sents

#---- sents contains the text in an array of strings ['cosas', 'things', eng, span..]

#---

#input_text = input("phrase?")

input_text = 'el mono'

#---- input

#----

inst = [] #array index of sentence of found input in corpus

k = 0

while k < len(sents):

if input_text in sents[k]:

inst.append(k)

k+=1

trns = [] #array index of translations of sentences in [inst]

k = 0

while k < len(inst):

trns.append(inst[k]+1)

k=k+1

#---- inst and trns are initialized

#----

matching_words = [] #array of words that appear in multiple indices in trns

matching_count = [] #array of size len(sents[trns[0]])

sent = sents[trns[0]].split(' ')

#def match:

a = 0

while a < len(sent):

matching_count.append(0)

for x in trns:

if sent[a] in sents[x]:

matching_count[a]=matching_count[a]+1

a = a+1

##every i of matching_count has the number of sentences that trans[0][i] appeared in

i_max_count = 0

a = 0

while a < len(sent):

if matching_count[a] > matching_count[i_max_count]:

i_max_count = a

a+=1

i_max_count has the index of the word that occurred in the greatest number of sentences

a = 0

while a < len(sent):

if matching_count[a] == matching_count[i_max_count]:

matching_words.append(sent[a])

a+=1

#now, matching words should have the words from trns[0] that occurred in the greatest number of other sentences

#these words, and their permutations(using exactly this number of words) and combinations(using less than this

#number of words) are possible translations of "input"

print matching_words

#---- matching words are in a list

#----

permutations = [] #array of permutations of the matching words

k = 0

while k < len(matching_words):

i = 0

while i < len(matching_words):

if i!= k:

temp = []

temp.append(matching_words[k])

temp.append(matching_words[i])

permutations.append(temp)

i+=1

k+=1

#---- permutations[] contains the permutations of the words in matching words

#----

eng_sents = [] #sentences in english corpora separated sentence by sentence

g = open('usr_corpora/monkey');

eng_raw = g.read()

eng_sents = eng_raw.split('\n')

print eng_sents

#---- Establish english corpora

#----

#

def bigram_x(first, second, text): #text = array sentences

b_sum = 0;

#t_size = size;

for sent in text:

index = 0;

array_sent = sent.split(' ');

while(index <= len(array_sent)-1):

if index == 0 and array_sent[index] == first:

b_sum = b_sum+1;

if index == len(array_sent)-1 and array_sent[index] == second:

b_sum = b_sum+1;

if index != 0 and index != len(array_sent)-1 and array_sent[index] == first and array_sent[index+1] == second:

b_sum = b_sum+1;

index = index +1;

return b_sum;

#
#a bigram is a component (substring) of the phrase (string)

#components make up the string (eg: English string). if they are good (likely to occur P(e)) and combine reasonably (likely to occur with each other (ngram)), then that string is English.

#b(y|x) - y given x - probability that y follows x

#b(y|x) - divide the number of times we see the phrase "xy" by the number of times we see the word "x".

#b(y|x) = number of occurrences ("xy") / number of occurrences ("x")

#loop from first to second-last, increment by 1

#check if text[x] equals first and if text[x+1] equals second

#increment sum

def count(word, text): #count number of occurrences of word in text, which is an array of sentences

ct = 0;

for x in text:

if word in x:

ct += 1;

return ct;

returns the number of a certain word found in the array of sentences

def bigram_prob(first, second, text): #text = an array of sentences

b(y|x) = num of occ. of "xy" / num of occ. of "x"

xy = (float)(bigram_x(first, second, text));

x = (float)(count(first, text));

print "x ",x;

return xy / x;

Calculate the probability through bigrams

#

probabilities = [] #probabilites of each permutation

for perm in permutations:

prob = bigram_prob(perm[0], perm[1], eng_sents);

probabilities.append(prob)

runs the probability calculation and store probabilites in array

#---- calculate the probability of the words in permutations existing in that order

maxprob = 0.0

maxind = 0

k=0

while k < len(probabilities):

if probabilities[k] > probabilities[maxind]:

maxind = k

k+=1

maxprob = probabilities[maxind]

best_perm = permutations[maxind]

print best_perm

#---- final probability and result - the most probable permutation of words - is in array best_perm

Corpora:

“cosas”

cosas

things

hola, me llamo Raul

hello, my name is Raul

hay cien pajaros en este arbol

there are a hundred birds in this tree

all of the boys that were in the house during the hurricane died

todos los chicos que estaban en la casa durante el huracan murieron

el mono me robo de comida y dinero

the monkey robbed me of food and money

no me preguntas nada

do not ask me anything

la musica de Carlos Javier es magnifico

the music of Carlos Javier is magnificent

yo tengo un chocolate para el mono

i have a chocolate for the monkey

el mono en el arbol es tan feo

the monkey in the tree is so ugly

“monkey”

i have a monkey in my house

the monkey is very small

one day the monkey will grow old and die

do you think that is sad

i think that is sad

i hope the monkey does not die soon

the monkey the wonderful monkey will live long and prosper

Leftover code:

def trigram_x_with_markers(first, second, third, text, size):

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

def trigram_x(first, second, third, text, size): #text = array sentences

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if index == 0 and array_sent[index] == first: #start of sentence, s.o.s., x

b_sum = b_sum+1;

if index == 0 and array_sent[index] == first and array_sent[index+1] == second: #sos, x, y

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+2] == third: #z, end of sentence, e.o.s.

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+1] == second and array_sent[index+2] == third: #y, z, eos

b_sum = b_sum+1;

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

Porbability of entire sentence

def prob_sent(sent, text, size): #returns probability of a sentence

take bigrams

for first and last cases, devise plan

start of sentence - send space

end of sentence is a period - send spa

product =1;

loop from first to last-3

index = 0;

while (index <= len(sent)-3):

trg = trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

#trigram_p (xyz) = trigram_x(xyz) / bigram(xy)

product = product * trg;

index = index +1;

def smooth_prob_sent(sent, text, size, ARRAY):

#ARRAY has smoothing coefficients

product =1;

index = 0;

while (index <= len(sent)-3):

trg = ARRAY[index] * trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

product = product

index = index +1;

probability of a model:

P(model | test-data) = P(model) * P(test-data | model) / P(data)

^ P(test-data | model) = P(test-data)

perplexity of the probability of model (the smaller, the better):

perp = 2 ^ (-log(P(e)) / N)

log probability:

log(P(e)) = log(f1 * f2 * f3 *...* fn) = log(f2) + log(f3) ... log(fn)

#Model 3

#all the words in an english sentence are replaced with french words, which are then scrambled around until they make sense

the bove is the second part - it can be used to check if they "make sense"

1. For each English word ei indexed by i = 1, 2, ..., 1, choose fertility phi-i with probability

n(phi-i | ei)

2. Choose the number phi-0 of "spurious" French words to be generated from e0 = NULL, using

probability p1 and the sum of fertilities from step 1

3. Let m be the sum of fertilities for all words, including NULL

4. For each i = 0, 1, 2,, 1, and each k = 1, 2, ..., phi-i, choose a French word tau-ik

with probability t(tau-ik | ei)

5. For each i = 1, 2, ..., 1, and each k = 1, 2, ..., phi-i, choose target French position

pi-ik with probability d(pi-ik | i, l, m)

6. For each k = 1, 2, ..., phi-0, choose a position pi-0k from the phi-0 - k + 1 remaining

vacant positions in 1, 2, ...m, for a total probability of 1/phi-0!

7. Output the French sentence with words tau-ik in positions pi-ik (0<=i<=1, 1<=k<phi-i)

