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Abstract

Fluid simulations are useful in many different areas ranging from
weather modeling to microscopic physics. Using the conventional
method of solving the districtized Navier-Stokes equations is very com-
putationally intensive and relatively hard to parallelize. The lattice
boltzmann method instead uses the discrete Boltzmann equation to
simulate Newtonian fluids using various collision models.
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1 Introduction

Fluid dynamics are useful in a broad range of fields including meteorology,
computer graphics, aerodynamics, and microscopic physics. The purpose of
this project is to accelerate relatively new methods in the field of computa-
tional fluid dynamics in order to be able to run realtime simulations. This
includes using new methods that can be parallelized more effectively and vec-
torizing these methods and running them on new hardware using GPGPU
techniques. Historically developed from a cellular automata approach, the
Lattice Boltzmann method provides a scalable simulation method that is
rapidly becoming popular.

2 Background

2.1 Lattice Gas Cellular Automata

Historically, the Lattice Boltzmann Method has evolved from the Lattice
Gas Cellular Automata (LGCA) Method. This approach to fluid dynamics
modelling is to make a hexagonal grid, with every grid point having a set of 7
possible velocities, each pointing to the neighboring lattice point, or staying
still. No two particles can occupy the same point with the same velocity. At
each time step, particles move to the next point dictated by their velocity.
If another particle is also moving to the same space, a collision model is
used to determine where each particle settles. From this microscopic model,
macroscopic behavior consistent with the Navier-Stokes equations emerges.
However, this method also has many drawbacks including statistical noise,
lack of a range of physical parameters, and difficulties in three dimensions.
The Lattice Boltzmann Method was created to overcome this, mainly by
replacing the boolean particle number in every lattice direction with a floating
point average, or distribution function.

2.2 Boltzmann Equation

The Lattice Boltzmann Method can be obtained from the discrete velocity
model of LCGA or from districtizing the Boltzmann equation. Here, the
derivation from the Boltzmann equation is presented.
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The Boltzmann equation

f(x+ vdt, v, t+ dt) = f(x, v, t) + Ω(x, v, t)

describes the time evolution of system of particles that interact with each
other via the collision operator Ω. It consists of two parts, streaming and
collisions. During streaming, particles are moved according to their velocities.
During the collision stage, the distribution functions (DFs) at each lattice
point undergo a collision operator, which is left as a choice.

2.3 The BGK Collision Operator

A simple and popular collision operator is the Bhatnagar, Gross, and Krook
(BGK) collision operator [2].

ΩBGK = −f − feq

τ

This is the single-time-relaxation model where collisions tend to push the
system towards local equilibrium. This model is computationally simple,
relying only on the local distribution functions, yet accurate, making it ideal,
and thus very popular, for use in lattice Boltzmann Simulations. It is the
one used in this simulation, yielding

f(x+ vdt, v, t+ dt) = f(x, v, t)− f − feq

τ

2.4 Discretization of Phase Space

In order to solve Boltzmann equation numerically, the domain must be dis-
trictized in phase space, consisting of time, configuration space, and velocity
space. Time is split up by time step. Configuration space is split apart
into a lattice with a discrete set of velocities connecting neighboring nodes.
Discretely, the equation becomes

fi(x+ ei, t+ dt) = fi(x, t)−
fi − f eq

i

τ

where fi are the distribution functions at every lattice point corresponding
to the velocity vectors ei where i = 1..m. Lattices are classified by a DnQm
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scheme where n is the number of dimensions and m is the number of ve-
locities. For example, D2Q9 is a two dimensional lattice with 9 velocities
connecting neighboring nodes (4 to each corner, 4 to each midpoint, and 1
stationary) The D3Q19 lattice is a three dimensional lattice with 19 velocities
connecting the neighboring nodes.

Figure 1: Various lattice and velocity configurations

3 Implementation Details

Currently, both D2Q9 and D3Q19 simulations are implemented, both using
the BGK collision operator. They is programmed in the C programming lan-
guage as this is a very performance intensive project and I am more comfort-
able in C than in Fortran. OpenGL is used to provide visualization display
and input. For visualization, a grayscale image is presented with each pixel
taking on the value proportional to the amount of fluid present at a lattice
point. Mouse presses currently add stationary fluid at the pointer location.
OpenMP is used for intra-node parallelism and MPI is used for inter-node
parallelism.

Two steps are performed at each time step: the stream step and the
collision step.
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3.1 The Stream Step

In the stream step, the first part of the Boltzmann equation is computed.
The distribution functions for each velocity at each lattice point are moved
to neighboring lattice points based on their velocity.

f(x+ ei, ei, t+ dt) = f(x, ei, t)

If a distribution function is hitting a boundary, then it undergoes the no-

Figure 2: The stream step

slip boundary condition and stays at the same lattice point, except with the
inverse velocity.

f(x, eī, t+ dt) = f(x, ei, t)

Figure 3: Boundary conditions

This step is parallelized very easily. At each time step, the only commu-
nication that needs to occur between nodes is the transfer of the status of
neighboring nodes.

3.1.1 Streaming Code
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#pragma omp p a r a l l e l for
for ( int x = 0 ; x < SIZEX ; x++) {

for ( int y = 0 ; y < SIZEY ; y++) {
i f ( f l a g s [ x ] [ y ] == OBSTACLE) {

continue ;
}
for ( int d = 0 ; d < DIRS ; d++) {

int nx = x + dx [ d ] ;
int ny = y + dy [ d ] ;
i f ( f l a g s [ nx ] [ ny ] == OBSTACLE) {

//no s l i p boundary cond i t i on
domain [ new ] [ x ] [ y ] [ I (d) ] += domain [ o ld ] [ x ] [ y ] [ d ] ;
} else {

domain [ new ] [ nx ] [ ny ] [ d ] = domain [ o ld ] [ x ] [ y ] [ d ] ;
}

}
}

}

3.2 The Collision Step

In the collision step, the second part of the Boltzmann equation is computed:
the interactions that particles have with each other. The BGK collision oper-
ator that is used is based off the fact that collisions tend to make the particles
approach equilibrium, governed by the Maxwell-Boltzmann distribution. At
each time step, a finite number of collisions occur, so the particles are only
pushed partway towards equilibrium. So the particle distribution functions
after collisions are a mixture of the pre-collision distribution functions and
equilibirum distribution functions.

The equilibrium distribution is found by taking the low Mach number
expansion of the Maxwell-Boltzmann distribution√

m

2πkT
e
−mv2

2kT

yielding

f eq
i = wi(ρ+ 3ei · u−

3

2
u2 +

9

2
(ei · u)2)

where
ρ =

∑
fi

u =
∑

eifi
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After computing the equilibrium distribution, the distribution functions are
then relaxed using the following relationship.

f(x, ei, t+ dt) = (1− ω)f(x, ei, t+ dt) + ωf eq
i

where ω is the parameter controlling the viscosity of the fluid. Values close
to 0 represent very viscous flows. Omega is determined from the viscosity
via the following relation

ω =
2

6v + 1

Figure 4: The collision step

3.2.1 Collision Code

#pragma omp p a r a l l e l for
for ( int x = 0 ; x < SIZEX ; x++) {

for ( int y = 0 ; y < SIZEY ; y++) {
i f ( f l a g s [ x ] [ y ] == OBSTACLE)

continue ;
f loat rho = 0 . 0 ;
f loat ux = 0 . 0 ; f loat uy = 0 . 0 ;
for ( int d = 0 ; d < DIRS ; d++) {

rho += domain [ new ] [ x ] [ y ] [ d ] ;
ux += dx [ d ] ∗ domain [ new ] [ x ] [ y ] [ d ] ;
uy += dy [ d ] ∗ domain [ new ] [ x ] [ y ] [ d ] ;

}
i f ( f l a g s [ x ] [ y ] == VELOCITY)

ux = 0.1∗ rho ;
for ( int d = 0 ; d < DIRS ; d++) {

f loat eq = 0 . 0 ;
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eq += rho ;
eq += 3∗( dx [ d ]∗ ux+dy [ d ]∗ uy ) ;
eq −= ( ux∗ux+uy∗uy ) ∗3/2 ;
eq += ( dx [ d ]∗ ux+dy [ d ]∗ uy ) ∗( dx [ d ]∗ ux+dy [ d ]∗ uy ) ∗9/2 ;
eq ∗= weights [ d ] ;
domain [ new ] [ x ] [ y ] [ d ] = (1−omega ) ∗domain [ new ] [ x ] [ y ] [ d ] +

omega∗eq ;
}

}
}

3.3 Different Cell Types

In order to handle the different cell types such as obstacles, fluid, constant
velocity, gas, and interface cells, the type of each cell must be recorded. An
array the size of the domain is used for this.

3.4 Visualization

There are many methods to visualize fluids on a computer screen showing
different things from density to velocity to pressure to vorticity.

3.4.1 Density Plot

One way of visualization is to plot the density at each lattice point by setting
pixels to a color proportional to the amount of fluid present. This shows fluid
at each point, but fails to capture any other information such as velocity when
density is constant as is the case in incompressible flows such as water.

3.4.2 Tracer Particles

Non-fluid tracer particles may be placed in the fluid. These particles are
then advected by the fluid at each timestep, using Euler’s method or moving
the particle by dt times the fluid velocity. The fluid velocity is computed by
finding the moments and then dividing.

v =
u

ρ

This shows how individual components of the fluid move and allows velocity
to be gauaged even in incompressible flows.
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3.4.3 Velocity Vector Field

Another way of showing velocity is to draw the velocity vector field. On an
evenly spaced grid, vectors are drawn corresponding to the velocity at that
grid point. One drawback to this is that it is hard to cover a wide range of
velocities effectively.

3.4.4 Vorticity

Another metric used in fluid simulations is vorticity, which is the curl of the
velocity field.

~ω = ~∇× ~v
It measures how much a the fluid is rotating around. Clockwise rotation is
represented as red while counter-clockwise is represented as blue.

3.4.5 Streamlines

Streamlines are the lines that a particle would follow through a path if it
were to pass through a fluid at a given time. Compared to tracer particles,
streamlines show the path that would be taken at every timestep rather than
having to view the tracer particles over an interval of time to see the direction
the fluid is moving. Streamlines were implemented in the flow past a cylinder
case by starting lines at the rightmost edge of the domain at evenly spaced
intervals and then moving backwards a fixed number of times according to
the velocity at that point. At every step, dx

dy
is calculated and then the

streamline is moved up or down corresponding to it.
As the grid is discrete and not continuous, the streamlines would become

very jagged. Bilinear interpolation was implemented to smooth them out.
This consisted of linearly interpolating the velocity field in the horizontal
direction at two different y values and then linearly interpolating the resulting
values in the vertical direction.

3.5 Simulation File Format

A simulation file format is used in order to handle different test cases. The
domain file (with suffix .d) records the types of cells at each gridpoint as well
as the size of the simulation. It consists of three space seperated integers,
SIZEX, SIZEY, and SIZEZ, and then a whitespace-delimited list of cell types
in column-major order with the following ids:
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0 obstacle
1 fluid cell
2 fluid interface cell
3 forced velocity cell
4 exit cell

Obstacle cells undergo no-slip bounce back collisions. Fluid cells are the basis
of the simulation. Fluid interface cells provide the boundary between fluid
and gas. Forced velocity cells are fluid cells but with the velocity moments
forced to a fixed velocity during the collision step. Exit cells are equivalent
to forced velocity cells albeit with special considerations taken to conserve
mass as they are on the edge of the simulation domain.

3.6 Visualization using Paraview

Paraview is an open source scientific visualization tool develpoed by Sandia
National Labs, Kitware Inc, and Los Alamos National Labs. It uses a dis-
tributed computing approach allowing it to analyze terascale datasets as well
as on small laptops for smaller data.

3.6.1 Moving Data into Paraview

In order to visualize simulation output using Paraview, the simulation must
output data in a format paraview can read. The simplest is the legacy VTK
file format [1]. The header looks like this:

# vtk DataFi le Vers ion 3 .0
LBM
ASCII
DATASET STRUCTURED POINTS
DIMENSIONS 128 32 64
ORIGIN 0 0 0
SPACING 1 1 1
POINT DATA 262144
VECTORS v e l o c i t y f loat

followed by a space seperated ascii floating point values describing the veloc-
ity at every grid point. Paraview can then import this data.

Polygon data is imported using the same VTK format but with a different
header.

# vtk DataFi le Vers ion 3 .0
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LBM2
ASCII
DATASET STRUCTURED POINTS
DIMENSIONS 128 32 64
ORIGIN 0 0 0
SPACING 1 1 1
POINT DATA 262144
SCALARS LBM int 1
LOOKUP TABLE default

followed by either a ”0” or a ”1” for every grid point based on whether there
is or is not an obstacle at that point.

3.6.2 Using Paraview

After importing velocity field data and polygon data into Paraview, it can be
visualized in many different ways. The contour filter should be applied to the
polygon data in order to get obstacles to display as polygons. Then, arrows
can be used to visualize the velocity field or streamlines can be generated
using the corresponding filters. The streamlines can then be colored as tubes
based on the velocity of the fluid at that point.

Figure 5: Flow past a cylinder in 3D visualized using Paraview
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Figure 6: Wing in a wind tunnel in 3D visualized using Paraview

4 Parallelization

4.1 Shared Memory Parallelization using OpenMP

Every timestep, the 3D grid is iterated upon in the x,y, and z directions.
Parallelization using OpenMP is trivial in this case. It merely involves placing
#pragma omp parallel for before the top level for loop:

#pragma omp p a r a l l e l for
for ( int x = 0 ; x < SIZEX ; x++) {

for ( int y = 0 ; y < SIZEY ; y++) {
for ( int z = 0 ; z < SIZEZ ; z++) {
// s imu la t i on
. . .
}

}
}

4.2 Cluster Parallelization using MPI

In order to scale past a single node, the MPI programming model is used to
distribute the simulation across a network. The Lattice Boltzmann Method
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is well suited for this. The first step is splitting up the simulation domain for
distribution into n nodes. This is done by splitting the simulation domain
into n SIZEX

n
pieces. The only communication required between these pieces

is then propagating the distribution functions on the edges to the neighboring
pieces at every time step. The collision step requires no communication at
all.

The current code is setup to run one master node which handles initial-
izing the domain and handling display and output i/o. Then n worker nodes
are run which run the simulation itself.

Further gains in performance can be seen by interleaving processing and
communication. At the start of the streaming step, asynchronous MPI
sends and receives are started to stream distribution functions to neighboring
nodes. Then, the rest of the stream step interior to a node is processed as
well as interior collision steps that do not depend on the data from neighbor-
ing nodes. Then, the processing blocks on the MPI receives, which are most
likely done by this time, after which the final collision step is performed and
then the process repeats again.

Every m time steps, the workers send back the simulation domain to the
master node in order for visualization. Care must be taken to make m large
enough as to not bottleneck the simulation on communication between the
workers and the master nodes.

Within each node communicating via MPI, OpenMP parallelism is also
used to take advantage of multiple processors connected via shared memory
in a node.

5 Test Cases

In order to verify the physical correctness of the simulation, various published
standard test cases are used.

5.1 Lid Driven Cavity

The lid driven cavity is a rectangular domain where the walls are non-slip
except for the top wall, which is non-slip, but moving at a constant velocity.
The simulation is setup to set the velocity of the fluid on the topmost row of
pixels to 0.01 in the right direction, for all except the rightmost pixels.
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Figure 7: In process lid driven cavity simulations visualized using particles

Figure 8: In process lid driven cavity simulations visualized using particles
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5.2 Flow Past an Obstacle

The flow past a cylinder is a rectangular domain (such as a pipe) with non-
slip walls and fluid being forced through from the left and then exiting out
the right.

This can also be used to simulate wind tunnel tests and compute lift and
drag on arbitrary objects and airfoils.

5.2.1 Kármán Vortex Street

A Kármán vortex street is a pattern of swirling vortices created behind a
blunt objects. It results in phenomena such as vibrations of car antennas or
singing of suspended telephone wires.

Figure 9: In process flow past a cylinder test visualized using vorticity and
streamlines demonstrating the Kármán vortex street

5.2.2 Lift and Drag Calculation

Wind tunnel tests can be performed by calculating the lift and drag on an
obstacle. During the stream step, lift and drag are computed by summing all
the impulses from the bounce back steps when an obstacle is it in the vertical
and horizontal directions respectively. An exponential moving average is then
used to give lift and drag numbers that are steadier with time. In parallel
code, values are summed by sending lift values for sub-grids back to the
master where they are then summed.

5.2.3 NACA Airfoils

The NACA series of airfoils is a standard series of airfoils that are generated
by mathematical equations. The 4 digit NACA airfoil series is governed by
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Figure 10: In process wind tunnel test visualized using vorticity and stream-
lines

the following equation:

y = 5tc

[
0.2969

√
x

c
− 0.1260

(x
c

)
− 0.3537

(x
c

)2

+ 0.2843
(x
c

)3

− 0.1015
(x
c

)4
]

• c is the chord length

• x is the position of the chord from 0 to c

• y is displacement from the centerline

• t is the maximum thickness for a given length of a chord

The centerline for cambered airfoils is calculated by the following formulas

yc = m
x

p2

(
2p− x

c

)
from x = 0 to x = pc

yc = m
c− x

(1− p)2

(
1 +

x

c
− 2p

)
from x = pc to x = c

To convert this to voxel data for use in the LBM simulation, iteration is
performed over in the direction along the chord and then individual voxels
are filled in based on the vertical values computed from the equations.
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6 Expected Results

The project will be expected to yield a CFD code that is able to simulate
fluids in realtime. Physically correct results should be achieved, which will
be measured using fundamental laws such as conservation of mass. This can
be used in realtime predictions in various fields, for example control systems
dealing with fluids. The speedup techniques used can also be applied to make
larger simulations run faster.

7 Results

Current results consist of a simulation of a two dimensional fluid that can be
conducted in realtime on a single processor on a 300x300 grid. The simulation
is currently unoptimized since I copy the memory at each timestep, which
while good for simplicity and getting a simulation up and running, is terrible
for performance.

A CUDA version is also implemented. Running this on a GPU is very
appealing because it is massively SIMD (single instruction multiple data). A
GPU has many threads that can simultaneously process the same instructions
on multiple data very efficiently. The Lattice Boltzmann method performs
the same operations on every lattice point.

Physically, the simulation visually appears to model correct fluid dynam-
ics behavior. However, using some code checks, I have found that mass in
the simulation is not conserved. This is a problem, since mass should always
be conserved. This is likely a result of the equilibrium distribution function
I am using and so I will need to check this in the future.

Issues have been found with the simulation when velocities exceed ap-
proximately 1

3
. Under these conditions, the fluid tends to stop being incom-

pressible and compress. The low mach number expansion of the Maxwell-
Boltzmann distribution also tends to deteriorate. In addition, the problem
becomes ill-conditioned, yielding increased floating point error.

7.1 Performance

A widely used metric of Lattice Boltzmann codes is MLUPS or mega lattice
updates per second, meaning how many millions of gridpoints can be updated
in one second.
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7.1.1 Single Threaded Performance

Core 2 X9650 3.00GHz 11.3 MLUPS
Xeon E5520 2.26GHz 8.8 MLUPS
Core 2 E8300 2.83GHz 10.6

Multi threaded performance scales almost linearly under shared memory
systems using OpenMP. Using 4 threads on a Core 2 Quad X9650, 41.4
MLUPS are acheived.

7.1.2 Memory Bandwidth Constraints

The primary performance constraint for the current implementation of the
LBM method is memory bandwidth. Relatively, on current CPUS, many
more memory operations are performed than actual floating point calcula-
tions. CPUs have evolved much more quickly than their memory subsystems
have.

This constraint is very observable when dealing with domain sizes near
the size of the CPU cache. Caches are very fast memory on the CPU itself,
but small in size typically in the range of several MB. Performance drops by
more than a factor of 2 when the size of the domain grows from being smaller
than the cache to being larger than the cache.

Taking this into account, performance can be improved by combining the
streaming and collision steps into one loop as to not require two memory
read and writes for every grid point.

7.1.3 Parallel Performance Scaling

Benchmarks are conducted on a cluster of dual processor Itanium 2 CPUs
@1.6 GHz connected via SDR Infiniband.

7.2 Implementation in CUDA

As the primary performance constraint is memory bandwidth and the LBM
algorithm is very SIMD (single instruction, multiple data), the architecture
of GPUs is very attractive as an implementation platform.

Using many threads, over 629 MLUPS are realized, an order of magnitude
faster than the fastest single CPU system.
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Figure 11: Visualization of an in progress fluid simulation

8 Conclusion

Lattice Boltzmann methods are a very attractive alternative to conventional
fluid dynamics solvers since they exhibit accurate results and are much easier
to parallelize. With the decline of Moore’s law in serial performance, it
has been realized in many-thread performance. Because of this, the Lattice
Boltmzann method has become even more appealing as the future of fluid
simulations.

21



Figure 12: Visualization of an in progress fluid simulation

Figure 13: Visualization of an in progress fluid simulation using a velocity
field

22



8.1 Applications

One application would be to simulate dispersion of smoke or bio toxins inside
a large city such as New York. Emergency management teams could use this
information in order to more effectively control such outbreaks and prevent
against terrorist attacks.

8.2 Future Research

Improved Lattice Boltzmann Models can still be investigated such as the
Multiple Relxation Time (MRT) model which performs collisions in moment
space rather than distribution space, thereby improving numerical stability.
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