Realtime Computational Fluid Dynamics Simulations Using the Lattice Boltzmann Method

Thomas Georgiou

Thomas Jefferson High School for Science and Technology Computer Systems Lab

June 2, 2010

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 1 / 25

Uses for Fluid Dynamics

- Computer Graphics
- Aerodynamics and Engineering
- Meteorology
- Oceanography
- Plasma Physics
- National Security
- and more

Figure: Rishiri Island, Japan

June 2, 2010 2 / 25

The Boltzmann Equation

$$f(x + vt, v, t) = f(x, v, t) + \Omega(x, v, t)$$

Conists of:

- Streaming
- Collisions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In order to solve the Boltzmann equation numerically, the domain must be split up into discrete components. This includes space, velocity, and time.

Naming Scheme

DnQm

- *n* is the number of space dimensions
- *m* is the number of velocities

Lattice and Velocity Configurations

১ ব ট ১ ট ৩৫৫ June 2, 2010 5 / 25

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The Stream Step

$$f(x+e_i,e_i,t+dt)=f(x,e_i,t)$$

timestep t after collision

four cells at timestep t+1 after streaming

<ロ> (日) (日) (日) (日) (日)

▶ ▲ ■ ▶ ■ ク ۹ @ June 2, 2010 6 / 25

Boundary Conditions

Boundary:

$$f(x, e_{\overline{i}}, t + dt) = f(x, e_i, t)$$

<ロ> (日) (日) (日) (日) (日)

The Collision Step

The BGK Collision Operator

$$\Omega_{BGK} = \frac{f - f_{eq}}{\tau}$$

Collisions tend to push the system towards local equilibrium.

 f_{eq} is the equilibrium distribution function Low Mach number expansion of the Maxwell Boltzmann distribution:

$$\sqrt{\frac{m}{2\pi kT}}e^{\frac{-mv^2}{2kT}}\approx w_i(\rho+3e_i\cdot u-\frac{3}{2}u^2+\frac{9}{2}(e_i\cdot u)^2)$$

Relaxed towards equilibirum with:

$$f(x, e_i, t + dt) = (1 - \omega)f(x, e_i, t + dt) + \omega f_i^{eq}$$

The Collision Step

CFD Simulations

June 2, 2010 9 / 25

Software Used for Implementation

• C

- OpenGL
- OpenMP
- MPI
- Qt4
- Paraview

(日) (同) (三) (三)

Visualization - Density Plot

Thomas Georgiou (TJHSST)

CFD Simulations

בּוּ אובי בּוּ בּיּאַ בּיאַ June 2, 2010 11 / 25

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Visualization - Velocity Vector Field

• Compute velocity field from fluid distribution functions

 $v = \frac{u}{\rho}$

• Draw grid of vectors along velocity

Thomas Georgiou (TJHSST)

Visualization - Tracer Particles

- Particles placed in the fluid
- Advected using Euler's method

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 13 / 25

Current Results - Lid Driven Cavity

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 14 / 25

3

(日) (同) (三) (三)

Lid Driven Cavity

Thomas Georgiou (TJHSST)

CFD Simulations

Flow Past an Obstacle

Kármán Vortex Street

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 16 / 25

- 2

<ロ> (日) (日) (日) (日) (日)

NACA Airfoil Series

Standard Airfoils

$$y = 5tc \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \left(\frac{x}{c}\right) - 0.3537 \left(\frac{x}{c}\right)^2 + 0.2843 \left(\frac{x}{c}\right)^3 - 0.1015 \left(\frac{x}{c}\right)^4 \right]$$

- c is the chord length
- x is the position of the chord from 0 to c
- y is displacement from the centerline
- t is the maximum thickness for a given length of a chord

$$y_c = m \frac{x}{p^2} \left(2p - \frac{x}{c} \right)$$

from x = 0 to x = pc

$$y_c = m \frac{c-x}{(1-p)^2} \left(1 + \frac{x}{c} - 2p\right)$$

from x = pc to x = c

Thomas Georgiou (TJHSST)

3

(日) (周) (三) (三)

Wind Tunnel Tests

Lift and Drag

		<u>~</u> ·		_			- `
1 ho	mas	aeorgi	വി		H٩	5	1.1
		000.8.	<u> </u>				• /

CFD Simulations

June 2, 2010 18 / 25

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Wind Tunnel Tests

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 19 / 25

Flow Past a Backwards Facing Step

Video

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 20 / 25

3

<ロ> (日) (日) (日) (日) (日)

Performance metric = MLUPS (Mega Lattice Updates per Second) Single threaded performance:

Core 2 X9650	4.64 MLUPS
Xeon E5520	3.84 MLUPS

Multi threaded performance scales almost linearly under shared memory systems using OpenMP. Using 4 threads on a Core 2 Quad X9650, 16.26 MLUPS are acheived.

(日) (周) (三) (三)

Parallelization

- Parallelized across a network of nodes using MPI.
- MPI will be used with OpenMP.
- OpenMP intra node parallelism
- MPI inter node parallelism
- Initial results exceed 66 MLUPS using two nodes.

Thomas Georgiou (TJHSST)

June 2, 2010 22 / 25

Results - Performance Scaling

Thomas Georgiou (TJHSST)

CFD Simulations

June 2, 2010 23 / 25

3

(日) (同) (三) (三)

Next Steps - CUDA

- GPUs are massively data parallel SIMD
- Problem is very data parellel
- Each lattice update can be performed simultaneously
- CPU and GPU version will be connected together via MPI for improved performance

3

24 / 25

(日) (同) (三) (三)

- Multiple Relaxation Time Model (MRT)
- Lid Driven Cavity quantitative results
- Reynolds number
- Free Surfaces

< ロ > < 同 > < 三 > < 三