
On the Incremental Computation of Simplicial
Homology of Triangulated Surfaces
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Brian Hamrick

May 28, 2010

Abstract

Homology groups are a fundamental algebraic invariant in algebraic topology that
allows the discrimination of topological spaces. Methods to compute the homology
groups of a simplicial complex are known in general, but they require expensive matrix
computations. For specific classes of simplicial complexes, both geometric and incre-
mental methods are known. However, these classes generally preclude the presense of
torsion in the homology groups. This paper investigates the possibility of an incremen-
tal homology type computation that can account for torsion and thus apply to a larger
class of simplicial complexes than previous results.

Keywords: algebraic topology, homology, algorithmic complexity

1 Introduction

Topology is the study of geometric structure on sets. One of the big questions of topology
is to determine when are two spaces essentially the same. Algebraic topology is a branch
of topology which computes algebraic objects which remain invariant when the underlying
structure remains the same. These algebraic invariants include homology groups which en-
capsulate certain characteristics about the underlying structure of the space. In this paper
I consider the homology groups of a certain class of spaces known as simplicial complexes.
Algorithms to compute these homology groups are known, but they are generally ineffi-
cient. This project will investigate the efficiency of various algorithms to compute these
homology groups. Improving the efficiency of such algorithms is applicable in experimental
mathematics, where computers can perform computations beyond the reach of human work.

1

2 Background

2.1 Previous Results

The computation of simplicial homology via reduction of the boundary matrices to Smith
normal form is rather classic. For sparse matrices, [3] gives an efficient algorithm to compute
the homology groups. This algorithm works in full generality; it will compute the homology
of any simplicial complex regardless of factors such as orientability. However, the algorithm
presented in [3] is probabilistic and the worst case analysis of the algorithm is unsatisfactory.
[2] describes a method by which simplicial complexes embedded in R3 may be transformed
into a homotopically equivalent three-dimensional manifold, for which the homology groups
may be computed efficiently via classical results of the structure of such spaces. This method
allows deterministic computation of the homology type of a simplicial complex embedded
in R3 in linear time, even faster than the probabilistic methods proposed by [3] for general
simplicial complexes. In this paper we investigate an incremental method that provides a
compromise between the algebraic and geometric methods in time, simplicity, and flexibility.

2.2 Definitions

In this paper, we deal solely with triangulated spaces, so a general notion of a topological
space is unnecessary. A k-simplex is the convex hull of k points in general position. We
denote the k-simplex determined by v1, v2, . . . , vk as [v1v2 · · · vk]. A k-chain is a formal sum
of k-simplices. The orientation of a k-simplex is taken into account in the k-chain such that
[v1v2 · · · vk] = −[v2v1 · · · vk], and similarly for any other transposition of two vertices. The
boundary of a k-simplex [v1v2 · · · vk] is the (k− 1)-chain

∑k
i=1(−1)i−1[v1 · · · vi−1v̂ivi+1 · · · vk],

where [v1 · · · vi−1v̂ivi+1 · · · vk] is the (k− 1)-simplex determined by all the vertices except for
vi. The boundary of a k-chain is the sum of the boundaries of the k-simplices that form the
chain.

Definition 1. The chain groups Ck of a simplicial complex are the free abelian groups gen-
erated by the k-simplices with addition as the group operation.

Definition 2. The boundary homomorphism ∂k : Ck → Ck−1 is defined by mapping each
k-chain to its boundary.

Definition 3. The cycle groups Zk of a simplicial complex are defined as the set of k-chains
with a null boundary, so Zk = Ker ∂k.

Definition 4. The boundary groups Bk of a simplicial complex are defined as Bk = Im ∂k+1.

3 Preliminary Results

3.1 The Abstract Incremental Algorithm

In this section, we will establish an abstract algorithm for incrementally computing the
homology type of a simplicial complex. We will work with a given simplicial complex K =

2

⋃N
i=1 σi, where σi ranges over all the simplexes of K such that Ki =

⋃i
j=1 σj is a valid

simplicial complex for all i. In this incremental algorithm, we will compute the homology
type of Ki for all i, starting from i = 1. The homology type of K1 is trivial to compute:
Hn(K1) = 0 for all n.

Next, we need to analyze the incremental step. We wish to compute the homology type
of Ki = Ki−1∪σi from the homology type of Ki−1. To do this, we will appeal to the following
theorem.

Theorem 1 (The Mayer-Vietoris Sequence). Given two subspaces A and B of X whose
interiors cover X, the following sequence is exact:

· · · → Hn+1(X)
∂∗→ Hn(A ∩B)

(i∗,j∗)→ Hn(A)⊕Hn(B)
k∗−l∗→ Hn(X)

∂∗→
∂∗→ Hn−1(A ∩B)→ · · · → H0(A)⊕H0(B)

k∗−l∗→ H0(X)→ 0

Given two spaces A and B which cover a space X, the Mayer-Vietoris Sequence relates
the homology groups of A, B, A ∩ B, and X. We’ll apply this to our simplicial complex
with A = Ki−1, B = σi, and X = Ki. The Mayer-Vietoris Sequence then tells us that the
sequence

Hn(Ki−1 ∩ σi)→ Hn(Ki−1)⊕Hn(σi)→ Hn(Ki)→ Hn−1(Ki−1 ∩ σi)→ Hn−1(Ki−1)

is exact for all n.
However, this relation can be simplified significantly. Ki−1 ∩ σi = ∂σi, the boundary

of σi, as Ki must be a valid simplicial complex, so the simplices forming ∂σi must be in
Ki, but they are also not σi, so they were in Ki−1 as well while the interior of σi was not.
Furthermore, σi is homotopy equivalent to a single point, so Hn(σi) = 0 for all n. Using
these simplifications, we arrive at the following result.

Corollary 1. Given two simplicial complexes Ki−1 and Ki and a simplex σi such that Ki =
Ki−1 ∪ σi, the sequence

Hn(∂σi)→ Hn(Ki−1)→ Hn(Ki)→ Hn−1(∂σi)→ Hn−1(Ki−1)

is exact for all n.

Let us now consider three cases. If σi is a k-simplex, we consider n = k − 1, n = k, and
n 6= k − 1, k separately.

First, consider n 6= k − 1, k. Then we have Hn(∂σi) = Hn−1(∂σi) = 0. Therefore,
corollary 1 tells us that 0 → Hn(Ki−1) → Hn(Ki) → 0 is exact, and it follows that
Hn(Ki−1) ' Hn(Ki). Since this map from Hn(Ki−1) → Hn(Ki) is induced by the inclu-
sion map ι : Ki−1 → Ki, the generating set for Hn(Ki) is the same as the generating set for
Hn(Ki−1).

Second, consider n = k − 1. Then we have Hn(∂σi) ' Z and Hn−1(∂σi) = 0. Then
corollary 1 yields that Hk−1(∂σi)

ι∗→ Hk−1(Ki−1) → Hk−1(Ki) → 0 is exact, so Hk−1(Ki) =
Hk−1(Ki−1)/ι∗(Hk−1(∂σi)), where ι∗ is the map induced by the inclusion ι : ∂σi ↪→ Ki−1.

3

Finally, consider n = k. Then we have Hn(∂σi) = 0 and Hn−1(∂σi) ' Z. Then corollary 1

yields that the sequence 0→ Hk(Ki−1)→ Hk(Ki)
∂∗→ Z ι∗→ Hk−1(Ki−1) is exact. ∂∗(Hk(Ki))

is a subgroup of Z, all of which are isomorphic to Z. Let x be an n-cycle that contains σi such
that the coefficient of σi is minimal but positive. Suppose that the coefficient of σi in x is a.
Then for any k-cycle y, the coefficient of σi will be a multiple of a, or else we can subtract
an appropriate multiple of x to find a k-cycle with a smaller coefficient of σi. Therefore, we
can write any k-cycle as cx+ y, where x is our specific cycle containing σi and y is a k-cycle
class in Ki−1. Then the homoology class of this k-cycle is simply c[x] + [y] where [x] is a new
generator and [y] is a homology class in Hk(Ki−1). All the requisite propeties of the addition
operations can be verified to see that Hk(Ki) ' Z × Hk(Ki−1) where the new generator is
our specific k-cycle x containing σi the minimum positive number of times.

Putting these together, we have the following tasks that need to be completed to create
a bona fide algorithm for incrementally computing the homology type and generating set of
a complex:

• Write the homology class of ∂σi as a linear combination of the generating set for
Hk−1(Ki−1).

• Compute the quotient of Hk−1(Ki−1) by the subgroup generated by the homology class
of ∂σi.

• Detect whether a new k-simplex is part of a k-cycle.

• If it exists, compute a k-cycle with the minimal positive coefficient of σi.

3.2 The One Dimensional Algorithm

Let us first consider the simple case of a one dimensional finite simplicial complex. The
result that we will expect from this algorithm is a number telling us the number of connected
components and the number of independent cycles in the complex, as well as a list of those
components and independent cycles.

Because our simplex is one dimensional, Hn(Ki) = 0 for all n ≥ 2 and all i. Furthermore,
we only need to consider two operations: adding a 0-simplex and adding a 1-simplex.

Assume we are working on the step to compute the homology type and generators for Ki

from that of Ki−1. Let us first consider the case where σi is a 0-simplex. This 0-simplex was
not already in our complex, so it is not part of the boundary of any 1-simplex. Therefore,
this 0-simplex is independent of everything in H0(Ki−1), so we have H0(Ki) ' H0(Ki−1)×Z,
where the new generator is simply the 0-cycle composed of this simplex.

Second, suppose σi is a 1-simplex. We know that ∂σi is of the form y − x for two points
x and y. Let us treat σi as a path from x to y. There are now two cases:

In the first case, the two bounding points of σi are in different connected components (they
have distinct homology classes in Ki−1). Then we have that H0(Ki) ' H0(Ki−1)/ι∗(H0(∂σi)).
Therefore, when we mod by the subgroup generated by [∂σi], we are simply modding by the
relation [x] ∼ [y], so the result is that two elements of the generating set, corresponding to

4

[x] and [y], are associated. This simply corresponds to a reduction of the homology group
and its generating set. No other elements of the generating set are affected.

In the second case, the two bounding points of σi are in the same connected component.
Then if we add σi to an existing path from y to x, we have a 1-cycle that contains σi exactly
once, so it is a cycle containing σi the minimal positive number of times. We then know that
H1(Ki) ' H1(Ki−1)× Z where the new generator is our found 1-cycle.

3.3 Implementation Details

Because of the low-dimensionality of this case, the task of writing ∂σi as a linear combi-
nation of the generating set for Hk−1(Ki−1) is rendered moot by the fact that the generators
simply correspond to the connected components that the two endpoints lie in. Updating the
generator corresponding to each point is a relatively simple task. When we need to merge
two generators, we choose either one of them and mark all of the 0-simplices in its connected
component as belonging to the other connected component. In this way, each connected
component retains a canonical name, so that we may easily find all the 0-simplices in any
given component.

Therefore, the only remaining task is that of finding the path from y to x in the last step
of the above section. To do this, we will use a floodfill algorithm. Breadth-first search is
used so that the shortest path is found and used. Because of the low-dimensionality, these
cycles are never modified in the generating set for the first homology group, so we use the
shortest path to simplify the output.

Each of these two operations is at most linear in the number of simplices, so this algorithm
takes at most quadratic time in the number of simplices.

4 The Main Result

In this section we present an algorithm for incrementally computing the homology type
and generating sets for the homology groups of a 2-dimensional simplicial complex where
the coboundary of each 1-simplex consists of at most two 2-simplices. We follow the same
incremental method based on the Mayer-Vietoris sequence as before, making use of a few
key lemmas.

Lemma 1. If a 2-simplex is part of a 2-cycle, then there exists a 2-cycle containing that
2-simplex exactly once.

Proof. We will call two 2-simplices neighbors if they share a bounding 1-simplex. Two 2-
simplices σ and τ are connected if there is a sequence of 2-simplices σ = σ1, σ2, σ3, . . . , σl = τ
such that σi and σi+1 are neighbors for all i. Let x be a 2-cycle containing a given 2-simplex
σ with a coefficient of c. Let y be the set of simplices in x that are connected to σ. y is
clearly a 2-cycle. I claim that all of the simplices in y must have the same coefficient up to
negation.

5

Let c denote the coefficient of σ in y. For any simplex τ in y, consider a sequence of
2-simplices σ = σ1, σ2, . . . , σl = τ . We will induct on i to show that the coefficient of σi is
the same as that of σ. The base case is clear, so we will only show the inductive step. For
a given i, consider the 1-simplex that is part of the boundary of both σi and σi+1. Call this
1-simplex υi.

Because y is a 2-cycle, it must have no boundary. However, the only contributions of υi
to the boundary are from σi and σi+1 by assumption. Since the contribution of υi from σi
is equal to either the coefficient of σi or its negation. Similarly, the contribution from σi+1

is equal to either the coefficient of σi+1 or its negation. Since these two contributions must
cancel out, the coefficients of σi and σi+1 must be either the same or negations of each other.
This completes the inductive step, so the coefficient of each σi is the same as that of σ, up
to negation.

Therefore, if c is the coefficient of σ in y, y/c is also a 2-cycle and contains σ exactly
once, so it is the desired cycle.

4.1 The Two Dimensional Algorithm

As before, we begin with a sequence of simplicial complexes K0, K1, K2, . . . such that
Ki =

⋃i
n=0 σn = Ki−1 ∪ σi for all i. For each simplex Ki we will compute the following:

• An independent generating set for each of the homology groups of Ki.

• The torsion coefficients corresponding to each of the above generators.

• A cycle containing σi exactly once, if one exists. We will call this cycle Si.

• The representation of each of the generators for Hn(Ki−1) in terms of the generators
of Hn(Ki).

In this algorithm, we will internally represent the generators as linear combinations of the
Si.

For the incremental step, we will look at three situations.

4.1.1 Adding a 0-simplex

If σi is a 0-simplex, then we know that σi is a 0-cycle by itself, so Hn(Ki) ' Hn(Ki+1)
for n ≥ 1 and H0(Ki) ' H0(Ki−1)× Z, where the new generator is Si = σi.

4.1.2 Adding a 1-simplex

If σi is a 1-simplex, then we will proceed almost identically to the one dimensional
algorithm. If the two vertices of σi are in different components, then we reduce the generating
set for H0 by identifying the two generators corresponding to the two endpoints. If the two
vertices of σi are in the same component, then we use a breadth-first search to find a cycle
containing σi exactly once. This cycle becomes Si and we update the generating set for H1

by augmenting Si with a torsion coefficient of 0.

6

4.1.3 Adding a 2-simplex

If σi is a 2-simplex, then the first order of business is to determine whether it is part of a
2-cycle or not. If σi is part of a 2-cycle, then we know that H2(Ki) ' H2(Ki−1)× Z, where
the new generator is Ci, the 2-cycle that we found from before. If σi is not part of a 2-cycle
then we write ∂σi as a linear combination of the generators for H1(Ki−1) and then we have
that H1(Ki) ' H1(Ki−1)/〈[∂σi]〉.

4.2 Implementation Details

Definition 5. A fundamental cycle Si is a cycle of any dimension that contains σi exactly
once and for any other simplex σj ∈ Si, we have j < i.

Theorem 2. The fundamental cycles {Si}i≤n form generating sets for the cycle groups Ck
of the simplicial complex Kn.

Proof. We induct on n. The base case, n = 0, is trivial as K0 is empty. Now suppose
that the fundamental cycles {Si}i≤n form generating sets for the cycle groups of Kn. Given
a cycle Z in Kn+1, consider the coefficient c of σn+1. If there is a cycle containing σn+1,
then we know that Sn+1 exists and contains σn+1 exactly once. Then Z − cSn+1 is a cycle
completely contained in Kn, and thus can be written as a linear combination of {Si}i≤n. By
adding cSn+1 to this representation, we obtain a representation of Z as a linear combination
of {Si}i≤n+1, as desired. This completes our induction.

Throughout the implementation of this algorithm, all cycles are kept as linear combina-
tions of either simplices, fundamental cycles, or current generators for the homology groups.
To translate between these, we keep a list of representations of each of the fundamental
cycles Si in terms of the generators Gi and use the theorem presented above to create rep-
resentations in terms of the fundamental cycles from representations in terms of simplices.

To determine whether a 2-simplex is part of a cycle, a floodfill is used. Lemma 1 tells us
that the only possible cycle containing a given 2-simplex is exactly the sum of the 2-simplices
that are connected to the given one. Computation of this sum is implemented using a floodfill
algorithm and the boundary of the sum determines whether or not the simplex is in fact
part of a cycle or not.

If not, the boundary of the new simplex is written as a linear combination of fundamental
cycles via the following reduction algorithm. At each step, find the last index such that the
corresponding simplex has a nonzero coefficient. Call the index i, so that the corresponding
term is ciσi. Then we add ciSi to our representation and subtract ciSi from our cycle, so all
the remaining terms are only composed of indices strictly smaller than i. After at most n
steps, this process will reduce any cycle in Kn to the trivial cycle, at which point we have
finished constructing the desired representation.

Finally, when computing the quotient of a homology group by a new relation, an elemen-
tary Smith Normal Form reduction algorithm is used so that we have a sequence of row and
column operations that reduce the natrix to Smith Normal Form. Row operations simply

7

compose the relations in different ways, so they do not change the generators. However,
when applying a column operation, we are taking two terms in each relation ciGi + cjGj and
replacing them with c′iG

′
i + c′jG

′
j. The column operations that we perform are made such

that c′i = gcd(ci, cj).
By Bezout’s Identity, we have integers x and y such that xci + ycj = c′i. Letting α =

ci
c′i
, β =

cj
c′i

, we get that we want to carry out the following transformation: c′i = xci + ycj,

c′j = −βci+αcj, G
′
i = αGi+βGj, G

′
j = −yGi+xGj. When we apply these transformations,

we see that c′iG
′
i + c′jG

′
j = (xci + ycj)(αGi + βGj) + (−βci + αcj)(−yGi + xGj) = (xciα +

ycjα+yβci−yαcj)Gi+(xβci+yβcj−xβci+xαcj)Gj = ciGi+ cjGj. Therefore, by applying
these transformations to the generators and the representations of the fundamental cycles,
we obtain new generators and new representations. The integers x and y are constructed
via the Extended Euclidean Algorithm.

5 Results

This algorithm was implemented in the C++ programming language. For purposes of
simplicity, a näıve implementation was used for the Smith Normal Form reduction step.
Furthermore, for the purposes of ensuring correctness, as few optimizations were made as
possible. This has the effect that the times reported here are a gross overestimate of the best
time possible for incremental computations of homology via this algorithm. The program was
tested on tori, Klein bottles, and real projective planes, triangulated with various finenesses.

5.1 Torus

Triangulations of the torus were made of 6n2 simplices, with n ≥ 3. Of these, n2 are
0-simplices, 3n2 are 1-simplices, and 2n2 are 2-simplices. To create the triangulation, an
(n + 1) × (n + 1) grid of points was created. The opposite sides of the square are to be
associated, so each point in row n and each point in column n was labeled with the same
number as the point on the opposite side of the square on the same row or column. Then a
triangulation of this square was created by connecting each point to the one directly to the
right, directly below, and diagonally below it to the right. Finally, the small triangles drawn
by this method are included into the complex to complete the surface. A schematic for this
process for n = 3 is shown in Figure 1.

To visualize the final output of the procedure, the square representing the torus is placed
in the uv-plane such that the square represents all values with 0 ≤ u < 2π and 0 ≤ v < 2π.
Then the torus is embedded into R3 with the parametric equations

x = cosu(1− 0.3 cos v)

y = sinu(1− 0.3 cos v)

z = 0.3 sin v

The final result of this method when run on the torus can be seen in Figure 3.

8

0 3 4 0

1 5 6 1

2 7 8 2

0 3 4 0

Figure 1: The schematic for a triangulation of a torus with n = 3

(a) n = 3 (b) n = 5 (c) n = 10

Figure 2: Tori in R3

Figure 3: Generators for the first homology group of the torus

9

5.2 Klein Bottle

Triangulations of the Klein bottle were made of 6n2 simplices in a similar manner to those
for the torus. A square was divided into n2 smaller squares, each of which is divided into two
triangles. The top and bottom sides of the square are associated in the same orientation as in
the torus, but unlike the torus the left and right sides are associated in opposite orientations,
creating a Klein bottle. In order for the triangulation to have a relatively simple immersion
into R3, the left and right sides of the torus are associated so that the top of the left side
corresponds to the middle of the right side. The schematic for the triangulation for n = 4 is
shown in Figure 4.

To visualize the output, the square is placed in the uv-plane such that the square rep-
resents all values with 0 ≤ u < 2π and 0 ≤ v < 4π. The immersion is then defined by the
equations

x =


(2.5− 1.5 cos v) cosu, 0 ≤ v < π

(2.5− 1.5 cos v) cosu, π ≤ v < 2π

−2 + (2 + cosu) cos v, 2π ≤ v < 3π

−2 + 2 cos v − cosu, 3π ≤ v < 4π

y =


(2.5− 1.5 cos v) sinu, 0 ≤ v < π

(2.5− 1.5 cos v) sinu, π ≤ v < 2π

sinu, 2π ≤ v < 3π

sinu, 3π ≤ v < 4π

z =


−2.5 sin v, 0 ≤ v < π

3v − 3π, π ≤ v < 2π

(2 + cosu) sin v + 3π, 2π ≤ v < 3π

−3v + 12π, 3π ≤ v < 4π

An image of this immersion is shown in Figure 5, and the two generators are shown in Figure
6.

5.3 Runtime Analysis

As a final verification for the usefulness of this approach in computational homology,
the runtimes for this näıve method were recorded for the torus and the Klein bottle for
each n between 3 and 12, inclusive.The results can be seen in Figure 7. When plotted with
logarithmic scales on both axes, the time taken is approximately linear with a slope of 8.
Remembering that the complexes have O(n2) simplices, this suggests that the algorithm
takes time proportional to the fourth power of the number of simplices. As this is a very
primitive implementation, these results are encouraging because even the simplest methods
result in a polynomial time algorithm.

10

0 1 2 3 8

4 5 6 7 4

8 9 10 11 0

12 13 14 15 12

0 1 2 3 8

Figure 4: The schematic for a triangulation of a Klein bottle with n = 4

Figure 5: The Klein bottle immersed in R3

11

(a) Torsion 0 Generator (b) Torsion 2 Generator

Figure 6: Generators for the first homology group of the Klein bottle

Additionally, the time per update was recorded and that data can be seen in Figure
8. The time taken can easily be seen to have three distinct behaviors, corresponding to
0-simplices, 1-simplices, and 2-simplices. Each update takes a relatively short amount of
time, so for applications where the simplicial complex requires significant time to build, this
method allows the homology computation to be done simultaneously, resulting in very small
additional time requirements.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 3 4 5 6 7 8 9 10 11 12

"torustimes"
"kleintimes"

(a) Linear Axes

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100

"torustimes"
"kleintimes"

(b) Logarithmic Axes

Figure 7: Total time required for a simplicial complex containing 6n2 simplices (seconds)

12

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 100 200 300 400 500 600

Ti
m

e
(n

s)

Simplices

"torus10times.dat"
"klein10times.dat"

(a) Linear Axes

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 100 200 300 400 500 600

Ti
m

e
(n

s)

Simplices

"torus10times.dat"
"klein10times.dat"

(b) Logarithmic Axes

Figure 8: Update time required for a simplicial complex containing n simplices (nanoseconds)

6 Conclusion

The incremental method for computing homology as described above serves as a useful
intermediate between highly algebraic methods and highly geometric methods for computing
homology type and homology generators in generality. While this method is not as gener-
ally applicable as purely algebraic methods, which rely on only the matrix representation
of the boundary homomorphisms, it also surpasses geometric algorithms by removing the
constraint that the triangulation should be embedded in R3, and particular should be ori-
entable. Additionally, due to the incremental nature of the algorithm, on-line computation of
homology is now possible. For applications where the simplicial complex takes a significant
time to build the complex, this method can be run concurrently and so effectively the only
time required is the time for the final update. Therefore, for such applications this method
could surpass even the extremely refined algebraic methods, as the matrix reduced in each
step is much simpler than that of the complete boundary homomorphism.

The results for this paper were obtained with an unrefined implementation of the al-
gorithm described. Many simple optimizations that are possible were not made, such as
removing generators of torsion 1 from consideration. Although the runtimes found in this
paper appear to be extremely high, in practice a more sophisticated implementation should
have vastly superior performance. Furthermore, the times shown here are representative
of the worst case performance. If torsion 1 generators are removed and the simplices are
added in an intelligent order, then the Smith Normal Form reductions will be performed on
extremely small matrices compared to the size of the input.

Areas for future research include a more refined implementation of the algorithm includ-
ing optimizations such as those listed above, an extension of this algorithm to remove the
constraint that at most two 2-simplices may meet at a single 1-simplex, and an extension
of the algorithm to higher dimensional complexes. Additional research could be done in the
field of object recognition, using the incremental approach to create an on-line recognition
algorithm as additional surfaces are recognized without recomputing the entire homology
type a multitude of times.

13

References

[1] Delfinado, Cecil and Herbert Edelsbrunner. “An incremental algorithm for Betti numbers
of simplicial complexes”, Proceedings of the ninth annual symposium on Computational
geometry, p.232-239, May 18-21, 1993, San Diego, California, United States

[2] Dey, Tamal K. and Sumanta Guha. “Computing Homology Groups of Simplicial Com-
plexes in R3”, Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
p.398-407, May 22-24, 1996, Philadelphia, Pennsylvania, United States.

[3] Donald, Bruce and David Chang. “On the complexity of computing the homology type of
a triangulation”, Proceedings of the 32nd annual symposium on Foundations of computer
science, p.650-661, September 1991, San Juan, Puerto Rico.

[4] Hatcher, Allen. “Algebraic Topology”. Cambridge University Press, Cambridge, 2002.

[5] Morandi, Patrick J. “The Smith Normal Form of a Matrix”, Unpublished, February 17,
2005.

[6] Peltier, Samuel, Adrian Ion, Yll Haxhimusa, and Walter Kropatsch. “Computing Ho-
mology Group Generators of Images Using Irregular Graph Pyramids”. Graph-Based
Representations in Pattern Recognition. Springer Berlin, 2007. p.283-294.

[7] Peltier, Samuel, Sylvie Alayrangues, Laurent Fuchs, and Jacques-Olivier Lachaud. “Com-
putation of Homology Groups and Generators”. Computers and Graphics v.30 n.1, p.62-
69, February, 2006.

[8] Storjohann, Arne. “Near Optimal Algorithms for Computing Smith Normal Forms of
Integer Matrices”. Proceedings of the 1996 international symposium on Symbolic and
algebraic computation, p.267-274, July 24-26, 1996, Zurich, Switzerland.

14

