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ABSTRACT ABSTRACT 
    This goal of this project was to develop and test a system which authenticates 
users based on their typing characteristics. This project examines the effectiveness
of a neural-network approach for typing characteristic authentication. Log-in-time
authentication and continuous authentication based on the user's typing
characteristics were both explored, and several demo systems were developed.
This process will be beneficial to user security because it will provide an extra
level of security to current authentication techniques, helping ensure an
intruder does not gain wrongful access to a user's account.
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Fig 1: The log-in program

Typing patterns differ by person. People naturally hold down specific keys for 
specific times and take longer between different keystrokes. These typing 
characteristics can be, and have been, used for authentication purposes. In this 
project, I propose and test the accuracy of using typing authentication methods to 
boost security. Log-in time and continuous typing pattern authentication can help 
ensure that an intruder does not wrongfully gain access to a user's system, 
whether by stealing their password or using their account after they have logged 
in. Previous research that has been found on the accuracy of authenticating by
typing patterns concurred on two results: Neural-network algorithms are the 
optimal approach for this goal, and such methods are on average 80-90% 
accurate. These findings suggest that typing characteristic authentication can offer 
a powerful boost to security.
Neural networks are modeled after the human brain. They are composed of
Nodes (i.e. neurons) which take inputs from previous nodes, compute a simple 
function from these Inputs, multiply the result by a given weight and then pass 
the result on to the next nodes (see Fig. 3 for a simple diagram).
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A log-in simulation program (Fig 1.) was created to demonstrate the typing 
authentication procedure. The user can create an account or log-in to an existing 
account. They specify their username and then type the given sentence and a 
comfortable pace while the program measures their typing data. If creating an 
account, the system then trains a neural network with their typing data. If logging 
in to an account, the system then computes the network value for their data, and if 
this value is within the given threshold of 1, they are admitted, otherwise they are 
denied access.

A continuous authentication simulation program (Fig. 2) was developed to show 
another application of the authentication technique. The user types a sentence 
while the program measures their typing data and uses the data to train a neural 
network. The user then interacts with the program in an instant-messaging format. 
After each message, the program runs the user's typing characteristics through 
the network, and if the value does not meet the given threshold the warning level 
is raised. Once the warning level reaches a critical value the user is locked out.

The neural network compute algorith works as follows:
  1. Generate data vector from typing data
  2. For each node, top-down, multiply that node's input(s) by that node's weight
  3. Sum the nodes of the final layer and put the sum into the activation function
  4. Return the final value, a number between 0 and 1

The neural network training algorithm works as follows:
  1. Generate L node levels with random weights
  2. Randomly select N data files from the data set* and generate data vectors for
       these files, as well as for the user's typing data
  3. For C cycles on every selected data set:
      i. Alternate computing the network value for the user's data vector
           and one of the other randomly selected data vectors.
      ii. Change the current weight (given by the cycle number) by a small amount
      iii. Compute the network value again, and calculate the error from the desired
          output value (1 for the user's data, 0 for the non-user's data)
      iv. Adjust the current weight accordingly to minimize the error

( *: In the second quarter, a data collection program (See Fig. 2) was developed,
was posted online, and collected  1,600 sample data files.)
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In order to test the effectiveness of the neural network structure, 
the following testing procedure was used:
  1. Train a neural network for each data type in the data set.
  2. For each network, run every other data file in the data set   
        through that network. Record the returned value.
  3. Calculate the average number of data files that breach the 
        network (return a value within the threshold) for a range of 
        different thresholds.
The type of network used was then modified in a variety of ways 
and the statistics for each type of network are stored in the table 
above.

The findings suggested that .007 was the optimal threshold value 
for this algorithm, as under 10% of the files breached at this 
value, and the user was still able to access their account able 
80% of the time.
The minimum network settings for an accuracy of over 90% (i.e. 
less than 10% breach rate) were found to be a single-layered 
(L=1) network with 25 randomly selected files used (N=25) and 
1000 cycles per file (C=1000). The main modifications tried were 
increasing the layers (L), number of files (N), and cycles (C). As 
shown by the table above, the various modifications did not 
significantly improve the accuracy of the network approach, but 
did consume significantly more time.

These findings suggest that a simple neural network can provide 
an extra layer of authentication security. However, at a breach 
rate of 10%, the neural network typing authentication approach is 
not nearly effective enough to replace passwords, and should only 
be used as a security supplement. While it may cause the user a 
small inconvenience if they have to attempt to log-in multiple 
times, the security boost is worth the cost.
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Fig 3: An outline of a simple neural network
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Fig 2: The continous authentication 
          simulation program

Network Type Mean 
Training 

Time

% Breached 
(threshold of 

.007)

Base Network 1.1 s 9.5%

Increased exposure 
(N: 25 → 50)

2.3 s 9.3%

Increased Cycles 
(C: 1000 → 2000)

2.7 s 9.1%

Increasing Layers 
(L: 1 → 3)

3.1 s 9.5%

Increasing All 7.5 s 9.1%

Fig 4: A summary of the results of testing
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