COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Mo Lu, Period: 04

2. Date of this version of your program: 06/05/2010

3. Project title: Coverage Efficiency in an Autonomous Lawnmower

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

Simulation Run-through, key parts of actual code attached

Inputs: Hard-coded randomly generated matrix, 0's represent 1's represent obstacles, 9 Represents Robots, 2 represents unmowable terrain type.

Obstacles

Terrain Types, area input

Horizontal

Vertical

Diagonal

Circular (Problematic, see results)

Robot Class

Knows Location in Matrix

Knows Direction/Angle

Scan Method

Map Method

Move Ahead Method

Backtrack Method

Change Facing

Run Method

Angle Return Method

isBoundary

Scan Method

Scan 2 spaces ahead

Return distance until out-ping scan encounters a 1 or a undefined value (boundary)

Calculate location of the 1, based off current location

Recur, scan in 180 degree forward direction, increments of 0, 45 and 90 degrees

Return spaces that have a value of [1]

Map Method

Creates matrix of 0's

Store 1's in matrix

Move Ahead Method

while location+1!=[1] and isboundary(location)=false:

move ahead 1 space

if location+1=[1]

map(location+1)

newangle=scan(location)

moveahead(location, angle)

Backtrack Method(Location)

set robot coordinates to [x-1][y-1]

Change Facing(Location)

if at boundary of environment:

change facing 180 degrees

isBoundary(location)

if location+1=undefined

map(location+1)

return true

else

return false

Run

While Map()!=Environment

Scan()

Move Ahead{}

Scanning Code for Rangefinder

import time

import serial

import os

import dataconversion.py

Inputs: Physical environment, location on grid

Create a debug list for resulting values

Check ports for rangefinder

for x through 10

test for connection

connect=1

else

connect=0

break

getInput(s):

 s=raw_input()

 return s

sendSerial Call()

if sent=true

getSerial()

readDevice.inwaiting

print

receive_Data():

strin=getInput(strin)

sendSerial(strin)

time.sleep(.5) #Pause to let the rangefinder update

strout=receiveSerial(strout)

printOutput(strout)

printOutput(input)

dataconvsersion.convert(input) #Converts binary to hex to ACSII

if main = '____'

scan()

sendSerial()

recieve_Data()

for x in range 7 #Scans 7 times

printOutput()

Shape Analysis Code, See attached. Self explanatory.

ShapeAnalysis method

open debug output

readstrings()

def shapeanalysis(olist):

 shapecount=0 #Returns most possible shape of the obstacle depending on scanned values

 for x in range olist.len():

 new=olist[x]

 sl=new[2]#Left Side of Scanned values

 sr=new[6]#Right Side of Scanned values

 sf=new[4]#Front

 if (sl+sr+sf%3=0):

 shapecount=1 #Square obstacle

 return shapecount

 if (s1+sr+sf% pi is int):#Integer test for a radius constant

 shapecount=2#Circle obstacle

 return shapecount

 if (sl+sr+sf=sf):

 shapecount=3#Line obstacle

 return shapecount

 else if (sl+sr+sf!=0)

 shapecount=4#Traiangular obstacle, since none other exists

 return shapecount

Results: GUI w/ Scanner Results

[image: image1.jpg]

[image: image2.jpg]i el

Raw Output Example

0 ['1891', '0', '0', '7', '320', '384', '0']

1 ['1891', '0', '0', '7', '320', '384', '0']

2 ['1891', '0', '0', '7', '320', '384', '0']

3 ['1891', '0', '0', '7', '320', '384', '0']

4 ['1891', '0', '0', '7', '320', '384', '0']

5 ['1891', '0', '0', '7', '320', '384', '0']

6 ['1891', '0', '0', '7', '320', '384', '0']

7 ['1891', '0', '0', '7', '320', '384', '0']

8 ['1891', '0', '0', '7', '320', '384', '0']

With a 270 degree vision, the values of the outputs moves in increments of 45 degrees (270/6). Larger values naturally represent longer distances and 0's represent unseasonable distances (too far.) The 7s in the middle represent the value directly in front of the scanner.

Simulation Results

[image: image3.emf]0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

5

10

15

20

25

Runtimes Given Mapsize

6x6

Test #

Runtime (s)

Runtime Analysis

Based off a 8x8 matrix, and a rising level of complication in obstacle construction.

[image: image4.jpg]000000000000000000000000000
000000000000000000000000000
000000000000000000000000000
60000000000000
0000010000001100000000000000
000000 1000001100000000000000
000000130X00100000000000000
000000019000100000000000000
0000000010001100000000000000
000000000 1001100000000000000
0000000000'0100000000000000
000000000001100000000000000
000000000000000000000000000
000000000000000000000000000

Testing the Rangefinder, Visualizations

[image: image5.jpg]Monitor typeA

o
“119.883rde01

[image: image6.jpg]“119.5311de01

Testing on this version of the program (Final)

1)I have begun to attach the scanner and incorporate my scanning code into the Audrino board. This has not had much impact on the code itself, because the Audrino model we are using is fully compatible with the Python programming language. However, the scanner does not perfectly synch up with the power sources provided, and after a few trial runs, I have been forced to decrease the scan rate to match up with the power consumption of the motors. Using the default baud scanrate of 30 pings/sec I have found a significant discrepancy with the actual environment and the scanner's real time visualization on the computer screen. Essentially, the scanner is always lagging around two seconds behind the robot's movements. I've found the optimal scanrate to be around 27 pings/sec. At this speed, the scan rate and the movement rate match up fairly well without sacrificing much of the scanning-update speed.

2)Using the Vmon visualization, I began to test for the maximum scan range of the device. This involved placing a block directly in front of the scanner in an otherwise completely flat surface and moving it back until the scanner couldn't register the block. I then analyzed the actual distance and the print output for the maximum scan range, and the actual value that each unit in the output was worth. Hokuyo claims the maximum scan distance is 725 hexadecimal units, which translates to around 6.5 meters given my experiments. The maximum range that registered on Vmon was round 5.9 meters away from the scanner, and even then the ping visualization was weak. I have found that the strongest scanning range is from 1-4 meters. At this distance, the update times on the visualization give the clearest and most lag-free correspondence with the adjustments in the environment. At distances less than 1 meter, the points become clumped and it becomes hard to distinguish between curves and straights. At distances greater than 4 meters, the visualization and data recognition lose clarity and straights don't show up consistently. Also, quick motions in the environment do not register as well past the 4 meter mark.

3)This new code does increase the runtime, but the filters prevents the GUI from showing bumps or spikes in the obstacles. In the end, this shows a more accurate picture of the environment than before. This also smooths out the images, giving a more visually accurate picture.

Additionally, I have been playing with pause times between update scans to see if positioning of the robot can change the structure of the GUI visualizations. Usually, I generate the visualizations only after the output has been finalized. This test involves generating them while the robot is still scanning and running, finally implementing the simultaneous section of SLAM.

From my results I have concluded the the mapping and visualization parts of my code remain accurate within a 1 unit space so long as the robot remains around +/- 3 mm within the center. Once the robot passes that working radius that is focused on the obstacle center, the smoothness of the obstacles it sees begin to once again become jagged.

Final conclusion: Robot can see. Great success.

5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

Many conditions have been met for success of this project. My original goal was to successfully adapt the mapping program for the navigational use of the LMS rangefinder. While accomplished, the program(s) could stand to be refined. Future versions of the simulation should address the accuracy of the mapping, with more advanced obstacle types, such as terrain types and polygons. Current analysis of the project is determined by the correlation of the obstacle map with the environment, and the results have been accurate. 4th Quarter, I have addressed many of the issues that had been carried over from last quarter, such as obstacle smoothing, output readability, and range-measurement conversions. Unfortunately, the robot could not be built in time, so my scan programs do not have the opportunity to be tested in a live-fire condition.

� EMBED opendocument.ChartDocument.1 ���

_-393527216.unknown

