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Abstract

Coverage efficiency is a major goal of certain
autonomous robotic systems. In the field of
robotic lawnmowing, coverage efficiency has
yet to be fully developed and there are differ-
ent methods to approach coverage efficiency.
The solution this paper covers is uses Simul-
taneous Localization and Mapping, known
as SLAM. Using a laser scanner, SLAM al-
gorithms create a map detailing the obsta-
cles of the enviornment. Once obstacles are
mapped, the algorithm process the map, and
dictates where the robot can move, where it
has moved, and where it currently is in rela-
tion to the obstacles. This data will enable
the robot to cover the entire lawn.

Keywords: map processing, area effi-
ciency

1 Introduction

Today, automated systems have supple-
mented humans in previously labor-intensive
tasks. Automated lawnmowers are an exam-
ple of these systems, but the currently avali-
abe technology in automated lawnmowing is
inefficient and primitive. This paper will pro-
pose and implement an alternate method to
automated lawnmowing, known as Simulta-
neous Localization and Mapping, then report
back the results.

2 Background

Commercial autonomous lawnmowers today
do not have processing systems appropriate
for efficient coverage. Current approaches to
commercial robotic lawnmowing operate un-
der the idea that if a lawmower is constantly
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mowing the lawn, then the lawn stays con-
stantly mowed[1]. This is done by a series
of random cuts and turns, which if given
enough time, theroetically could cover an en-
tire unmowed lawn[1]. Another aspect of this
method is the use of ”bump-and-go” technol-
ogy. The system does not recognize the pres-
ence of obstacles until it actually hits it, and
when it does hit obstacles, it does not store
their locations for future use. This method is
horrifically innefficient in terms of time and
energy, when backtracking is taken into con-
sideration. Random cuts also contain the
possibility that a certain section of the lawn
will never get mowed. This project proposes
a different approach to this method: use of
mapping tecniques to recognize landmarks,
avoid obstacles, and naviagate an enviorn-
ment[4]. This method consists of three parts:
1) Use of a constantly updating laser scanner
to recognize obstacles, 2) Creation of obstacle
map using the laser data, and 3) Processing
that obstacle map for runtime efficiency[2].
Success is determined by how effectively the
robot avoids the obstacles and how quickly it
runs through the lawn.

3 Development

3.1 Theory

SLAM theory is centered around the map-
ping process. A laser scanner is mounted on
the robot, and pings out laser data in a 180
degree angle. The time it takes for the laser
to hit an obstacle determines how far the ob-
stacle is. These values are tracked by the sys-

tem while the scanner is constantly working,
and repeated obstacle values signify an ob-
stacle, which the robot maps in relation to
its current position. Once the obstacles are
mapped, the robot will be able to process the
most viable and efficient route through the
lawn, taking into consideration the obstacles,
terrain, and boundaries of the lawn. It will
also take account power sources and effective
runtime. The end result will enable the robot
to navigate and mow the lawn.

3.2 Project Work

Before the SLAM algorithims can be imple-
mented into a physical robot, it must first run
in a simulation. The final version of the sim-
ulation consists of a pre-created matrix based
enviornment where the obstacles and terrain
have been set. The robot is placed in the
environment and keeps track of its position
and obstacles, via the use of a coded coor-
dinate system, a scanner mimic which has
a 2 space range, and a blank obstacle map.
As the robot moves and scans through the
enviornment, obstacles are recognized, and
the robot begins to build on its own inde-
pendent matrix enviornment. The output of
this mapping process matches the locations of
the obstacles in the enviornment, and gives
the robot an idea of where it can and can-
not move in future mowings. The program
is advanced enough to navigate and map ver-
tical, horizontal, diagional, and circular ob-
stacles. It also can recognize the boundaries
of an environment. The simulation has been
fully adapted for use with the Hokuyo URG-
04LX Rangefinder. This has included trans-
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lating the ’scanning’ methods of the simula-
tion into C++, which the rangefinder soft-
ware supports, unlike Python. Also, this
translation has involved incorporating base
code structures from the rangefinder software
into the code, most of which covers appro-
priate command calls for the rangefinder to
send out pings at certain rates. The concept
behind the rangefinder is nearly the same as
the mimic from the simulation; a ping out
that measures the time for the ping back,
which determines the distance to an obsta-
cle. Current version has been tested for a
triangular environment, which incorporates
the diagional, vertical, and horizontal obsta-
cle recognition. Also, analysis has been done
on the runtime effencieny of the simulation
scanning, in order to optimize certain sec-
tions and clean up laggy code. The finalized
code takes the original inputs given to the
URG which is in binary form, and converts
that into a hexidecimal intermediary format.
This is then translated into an ACSII which
is then fed to the GUI. Though the end re-
sult is the same as if using binary, the extra
translation steps allow the user to cross check
for disrepencies between the visualizaion and
the inputs.

4 Testing and Analysis

The most general test of the performance of
the system is if it mows the lawn. This de-
pends on wether or not it maps the environ-
ment accurately. When efficiency is taken
into account, three new categories for testing
arise:

• Time efficiency

• Coverage precentage

• Backtracking

These testing categories are dependent on
obstacle and boundary recognition, obstacle
mapping, location tracking, and unmowable
terrain recognition. One aspect of the test-
ing is focused on obstacle/boundary recog-
nition and obstacle mapping. This testing is
determined by how accurate the obstacle map
is when compared to the environment. The
simulation itself, specifically the robot move-
ment, has not been tested in a non-matrix
based enviornment, but the translated code
has been tested in those types of environ-
ments to a certain degree. The non-matrix
based enviornments (physical environments)
has given results, but only the scanning has
been tested. Many conditions still must be
met for success of this project, if the original
goal is to be met. This involves on getting the
robot to move without assistance, in order
to fully ensure that the navigational aspects
of the simulation can be translated into the
robot platform. Any future testing will ad-
dress the processing aspect of the program,
with sucess determined by coverage and time
efficiency.

5 Results

In the simulation, the robot is correctly
placed in the enviornment, and obstacles are
generated. See Fig. 1. Red represents
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Figure 1: Environment

the lawnmower, yellow represents the bound-
aries.
Mapping algorithims print out a matrix-
based map. See Fig. 2. [1] represents an un-
moveable zone, and [0] represents moveable
zones.
Current inputs include diagional, vertical,
horizontal, and circular obstacles. See Fig.
3/4/5. Obstacles represented by figure 5 have
been tested with the rangefinder. See Fig. 6

6 Discussion

Before the SLAM algorithms can be imple-
mented into a physical robot, it must first run
in a simulation. The current version of the
simulation consists of a pre-created matrix
based environment where the obstacles and
terrain have been set. The robot is placed
in the environment and keeps track of its po-
sition and obstacles, via the use of a coded
coordinate system and a scanner mimic. The

Figure 2: Modified Environment

Figure 3: Input Environment: Diagional,
Vertical, and Horizontal
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Figure 4: Input Environment: Circle

Figure 5: Output: Diagionals

Figure 6: Output: Triangular/Simulation

Figure 7: Output: Triangular/Rangefinder
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Figure 8: Scanner Vision 1

Figure 9: Scanner Vision 2

Figure 10: Tranlated ACSII Output, 8 scan

robot moves and scans through the environ-
ment so long as obstacles are a certain dis-
tance away, and the environment map does
not equal the obstacle map. Obstacles are
recognized, and the robot begins to create its
own independent matrix environment. Since
the output of this mapping process matches
the locations of the obstacles in the envi-
ronment, it can be concluded that the scan-
ning and obstacle recognition works for cer-
tain obstacles. That, along with the robot’s
ability to keep track of its position gives all
the nessacary data to begin optimization al-
gorithims. The simuilation has been tested
for non-matrix based environments (graphic-
based). However, only the scanning por-
tion of the code has been tested in this en-
vironment. Because non-matrix based env-
iornments cannoot have a coordinate system,
the robot must process its location based off
odemetry (wheel movement calculations) and
its last known position. In order for this to
be tested, the robot must move on its own.
One problem that needs to be address in the
current code is the tendency to re-scan al-
ready known obstacle locations. Future ver-
sions will need to reflect more realistic condi-
tions such as terrain types and powersources.

7 Conclusion

The final version of the program gives all the
nessacary data for optmization processing to
begin. Also, the program is advanced enough
to be translated for use in a real environ-
ment and has been tested as such. While the
robot can see and process an physical envi-
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ronment, movements still must be considered
and tested before the project can be consid-
ered fully complete.
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