
Coverage Efficiency in Autonomous 
Robots With Emphasis on Simultaneous 

Localization and Mapping Algorithms
Mo Lu

Computer Systems Lab 2009-2010

Abstract
Procedures, Methods, and 
Results

Today, automated systems have 
supplemented humans in previously 
labor-intensive tasks. Automated 
lawnmowers are an example of these 
systems, but the currently available 
technology in automated lawnmowing is 
inefficient and primitive. This project will 
propose and implement an alternate 
method to automated lawnmowing, 
known as Simultaneous Localization and 
Mapping.

Background
Current approaches to commercial robotic 
lawnmowing operate under the idea that if a 
lawmower is constantly mowing the lawn, then the 
lawn stays constantly mowed. This is done by a 
series of random cuts and turns, which if given 
enough time, theoretically could cover an entire 
unmowed lawn. This method is horrifically 
inefficient in terms of time and energy, when 
backtracking is taken into consideration. This 
project proposes a different approach to this 
method: use of mapping techniques to recognize 
landmarks, avoid obstacles, and navigate an 
environment This method consists of three parts: 1
) Use of a constantly updating laser scanner to 
recognize obstacles, 2) Creation of obstacle map 
using the laser data, and 3) Processing that 
obstacle map for runtime efficiency. Success is 
determined by how effectively the robot avoids the 
obstacles, how quickly it runs through the lawn, 
and how accurate the created obstacle map is.

The entirety of the project code come 4th 
quarter is split up into two parts. The first part 
of the code generates a random matrix 
environment, places obstacles, and runs a 
representation of the robot through matrix. 
This part is array/recursive-trace structure 
based. 
The simulation has been fully adapted for use 
with the Hokuyo Rangefinder. Testing and 
coding has been focused on making the 
rangefinder successfully scan the 
environment that the testing takes place in 
and utilizing the scanner commands. This 
involved translating binary inputs into a 
hexadecimal intermediate step, then finally to 
an ACSII output. This final output is then 
given to the GUI which then gives a visual 
representation of the environment.
The robot can see. This specific part of the 
total project has been completed.

Simulation Environment

Actual Environment
Rangefinger Sight

ACSII Output
0 ['1891', '0', '0', '7', '320', '384', '0']
1 ['1891', '0', '0', '7', '320', '384', '0']
2 ['1891', '0', '0', '7', '320', '384', '0']
3 ['1891', '0', '0', '7', '320', '384', '0']
4 ['1891', '0', '0', '7', '320', '384', '0']
5 ['1891', '0', '0', '7', '320', '384', '0']
6 ['1891', '0', '0', '7', '320', '384', '0']
7 ['1891', '0', '0', '7', '320', '384', '0']
8 ['1891', '0', '0', '7', '320', '384', '0']


	Slide 1

