Student: Mo Lu, Jefferson Sci/Tech

Title: Coverage Efficiency in an Autonomous Lawnmower

Background:

Modern commercial lawnmowers do not have appropriate processing capabilities for efficient coverage. Current approaches to commercial robotic lawnmowing operate under the concept that if the robot is constantly mowing the lawn, the lawn remains in a state of appropriate upkeep. This method involves a series of random cuts and turns, often implementing bump-and-go technology. In theory, this method, given enough runtime, will cover the entire lawn. This technique is horribly inefficient in terms of runtime and energy, especially when backtracking is factored into analyzing the runtimes. The cause for the inefficiency lies in the design of the technology; the robot never stores the locations of obstacles encountered for future navigational purposes. Runtime, efficiency, and energy usage would be sped up considerably if a system is designed with smart navigation in mind. This consists of recognizing, storing, and processing obstacle data; these aspects consist of the three pillars of effective robot navigation.

Description:

To build a functional robot and ensure that obstacle recognition and mapping was functional, the problem was split up into two parts. The first part consisted of programming simulative environments and robots to test and refine basic navigation methods. I worked on this part of the first two quarters, which helped decide the optimal method for navigation. This aspect of the program also included map analysis and processing, which was partly incorporated into the programming of the actual robot. Whatever the robot had to see, I incorporated the code necessary for vision and analysis. I started out with building a simulation.

The simulation I built consisted of a matrix of 1's and 0's, with 1's representing the obstacles. Obstacles, such as squares, lines, circles and triangles, were positioned into the environment, and the robot would run through the environment with a two-space forward vision. While running, the robot simultaneously keeps track and updates a blank map that is an exact size as the environment. As it runs, this map is populated with obstacle locations that are scanned. The end result is an exact copy of the environment that the robot has stored in its memory, which is then processed for maximum runtime efficiency. This is done by assigning certain moves values, with higher values representing the most inefficient moves. Right turns are assigned the lowest value 1, left turns are assigned values of 2, forward moves are not assigned a value, and backtracking is assigned a value of 3. The robot processes all possible moves recursively, and the lowest value navigational path returned presents the most efficient path.

The second part of the project was adapting and incorporating those methods and techniques refined in the first step onto a physical robot platform. This step consisted of programming a laser rangefinder for use with the robot and mapping out the obstacles. Third quarter, the robot was not in a condition to move, so I hand moved the rangefinder, which threw the distance measurements off because steps could not be constant. I was able to get the mapping program to recognize the same shapes that were in the simulation by setting up cardboard obstacles.

Fourth quarter, the chassis of the robot was completed, and while it cannot turn, it does move forward with consistency. This has afforded me consistency in my testing, along with advancing the complexity of the “eyes” of the robot. I have gotten the rangefinder to constantly update and scan in a 270 degree angle on the chassis. Testing has been conducted on the optimal conditions for the scanning, including clustering ranges, eliminating outliers, and adjusting baudrates (scans per second.) The outputs of the scanning code usually come out as a string of binary numbers, which are directly fed to the GUI for displaying the obstacles. However, the structure of the original outputs does not easily lend itself to be analyzed, so I converted those strings into hexadecimal format, which then was converted into ACSII format. The latest version of the output, once processed, can be analyzed by hand. This form also makes it easier to isolate outliers, which saves runtime for the final part of the code.

The last part consists of taking those filtered outputs and processing them for shapes. I assign certain patterns in the output text with constants that correspond with specific shapes. The most probable shape is then drawn on the GUI using the center-point of the scan as the base. This method leads to smoother obstacle displays.

