Final Description

Student: Adam Mounts

Title: Tracking in Persistent Surveillance

Background:

The development of a program that can track targets is a crucial development in security and/or surveillance systems. A tracker can be used in the event of a crisis situation to follow potential suspects or targets from the scene of a crime, or to find where these targets originated from, all based on aerial imagery. By using a program to do this, quick, real-time analysis is feasible rather than having human analysts spend hours reviewing detailed data at a time in which it might already be too late. This project attempts to explore different methodologies to coming up with a solution program.

Description:

This project has three main sections. The first section was the development of a "movie maker", essentially a program that creates and saves a sequence of images so that the functionality of the rest of the project can be tested. This was done in Python, by taking a simple circle and moving it in a random Brownian-Motion fashion. This allows for a simple and quick qualitative test of my tracking algorithms, but will by no means be the final test.

The second section is the development of a tracking algorithm using Pixel Subtraction. By taking two subsequent images from a movie file, and comparing the two images pixel by pixel, the pixels in which the value has changed are the areas of interest. Prior to the introduction of "noise", or content in the image that isn't the tracker, this theory should be sufficient to track the target. However, as the complexity increases, I will use a filter to help eliminate noise and focus on the target. Another development I intend to make is a more polished end product for the image subtraction program. As of now, it only shows the differences in a third image. However, if I use this third image and juxtapose it next to the original images, it increase, and also make more evident, the utility of this program.

The third section is the use of a Kalman Filter to use to help create a tracker. The Kalman filter runs recursively to minimize the square of the error, which means that as time goes on, its estimates will become closer and closer. It does this by first randomly generating possible "solutions", which can change in form accordingly with the scenario of the problem. Next, it changes all of these solutions slightly, and then sees if this effects the solutions in a benefit or a detrimental manner. By maximizing the benefits by making similar moves, and by avoiding moves that had a detrimental effect, it will recursively reach an equilibrium in which the solutions cannot be improved any further. This filter will be extremely useful because it can include data such as velocities, which will help determine between multiple targets if they are to intersect or pass near to each other. The obvious issue with this algorithm is its immense complexity, and altering it to fit this program effectively. However, I have coded a Kalman Filter, with the help of an online tutorial, that can ignore noise and reach the correct answer after a few dozen iterations. The program creates two different graphs using the Pylab library, both highlighting the inverse relationship between error and iteration.

