COMPUTER SYSTEMS RESEARCH
Code Writeup

1. Your name: Alex Stabile, Period: 4

2. Date of this version of your program: 5-31-10

3. Project title: Music Genre Analysis

4a. Code:

def MAIN(filename):

 song=MidiFile(filename)

 otherfile=filename[:filename.index('.')]+'.txt'

 song.create_events(otherfile)

 #print 'Number of commands: ', len(song.tracks[0].events)

 outfile=open('events_log.txt', 'w')

 for elem in song.tracks[0].events:

 outfile.write(str(elem)+'\n')

 outfile.close()

 beats=makebeats(song)

 print 'Beats Created: ', len(beats)

 out_name=filename+'_data'

 outfile=open(out_name, 'w')

 twelvetone=['C', 'Db', 'D', 'Eb', 'E', 'F', 'Gb', 'G', 'Ab', 'A', 'Bb', 'B']

 for b in beats:

 nums=b.allnotes[:]

 nums.sort()

 no_reps=''

 for val in nums:

 if val==-1:

 continue

 lettername=twelvetone[val%12]

 if not lettername in no_reps:

 no_reps+=lettername+' '

 #print 'BEAT: ', b.num

 chord_info=''

 if no_reps=='': #looking at a rest

 chord_info='REST'

 outfile.write(str(b.num)+': Rest\n')

 else:

 chord_info=chordid(no_reps)

 if not chord_info=='CHORD NOT FOUND' and not chord_info=='REST':

 #print '****CHORD TYPE: '+chord_info

 outfile.write(str(b.num)+': '+chord_info+'\n')

 elif not chord_info=='REST':

 #print 'NOT FOUND, USED ALTERNATE METHOD'

 info=altnonchord(no_reps, 3)

 #print info

 outfile.write(str(b.num)+': '+info+'\n')

 #print ''

 outfile.close()

 return out_name
files=['Prelude in Am.mid','Prelude in C.mid','Prelude in Eb.mid','Prelude in G#m.mid']

keys=['A','C','Eb','Ab']

for xyz in range(0, len(files)):

 filename=files[xyz]

 key=keys[xyz]

 output=''

 output=MAIN(filename)

 #output='Sonata X I.mid_data'

 infile=open(output, 'r')

 line=infile.readline()

 numchords=[0,0,0,0,0,0,0,0,0,0,0,0]

 numbeats=0.0

 #ratio=number of that kind of chord / total beats

 twelvetone=['C','Db','D','Eb','E','F','Gb','G','Ab','A','Bb','B']

 while not line=='':

 numbeats+=1

 col=line.index(':')

 if not ',' in line: #REST or NO CHORD

 line=infile.readline()

 continue

 com=line.index(',')

 beat=line[:col]

 chord=line[col+2:com]

 chord_letter=chord.split()[0]

 inversion=line[com+2:]

 #find inversion based on distance between the root and bass note of chord:

 key_to_chord=-1

 i=twelvetone.index(key)

 flag=False

 while flag==False:

 key_to_chord+=1

 if twelvetone.index(chord_letter)==i:

 flag=True

 if i<11:

 i+=1

 else:

 i=0

 numchords[key_to_chord]+=1

 line=infile.readline()

 infile.close()

 print '****************************'

 print 'FILENAME: ', filename

 print 'RATIOS: '

 ratios=[]

 for elem in numchords:

 ratios.append(elem/numbeats)

 print ratios

#Done!
5a. Description:

The purpose of this code is to read a given midi file and count the number of different kinds of chords in it. The function MAIN() is given a file, reads through all the commands in that file, and keeps track of the timing of the Note On and Note Off commands to organize them into beats (this is done in the previously completed “makebeats()” command). It then iterates through all the beats and determines what chord best fits each one. As this is done, the information is printed to an output file. An example line of output might look like: “Beat 1: C Major, first inversion.” Once finished, MAIN() returns the name of this output file. The rest of the code iterates through this file, counting the total number of different kinds of chords and dividing them by the total number of beats. These “ratios” are the data we are after, and are printed as output. I then copied them into a text file for storage.
4b. Code:

#Build network:

network=[]

node_num=0

for layer in range(0, 2): #because there are n layers (range(0, n)) (output not done here)

 network.append([])

 if layer==0: #input layer

 for index in range(0, 12): #because there are 12 inputs

 network[layer].append([1, 0, node_num])

 node_num+=1

 if layer>=1: #hidden layer

 for index in range(0, 13):

 network[layer].append([1, 0, node_num])

 node_num+=1

network.append([[1, 0, node_num]]) #output layer

for layer in network:

 print layer

#Build weights:
weights=[]

for x in range(0, len(network)-1):

 layer=network[x]

 next_layer=network[x+1]

 for node in layer:

 w=[]

 nid=next_layer[0][2]

 for z in xrange(0, nid):

 w.append(-1)

 for z in xrange(0, len(next_layer)):

 to_add=random()*2.0

 w.append(to_add)

 weights.append(w)

delta_weights=[]

for x in weights:

 delta_weights.append([0.0]*len(x)) #create an empty copy of weights

 #(to store the previous change)

infile=open('training_set.txt', 'r')

training=[]

cur_set=[]

line=infile.readline()

while not line=='':

 if line[0]=='*': #new composer (or finished)

 if len(cur_set)>0:

 training.append(cur_set[:])

 cur_set=[]

 line=infile.readline()

 continue

 str_nums=line.split()

 nums=[]

 for elem in str_nums:

 final=elem

 if ',' in elem:

 final=final[:final.index(',')-1]

 nums.append(float(final))

 cur_set.append(nums)

 line=infile.readline()

print '\n***TRAINING SET:\n'

for elem in training: #training[0] is set for first composer

 print 'NEW COMPOSER' #training[1] is set for second composer

 for z in elem:

#etc.

 print z

print '\n***END OF TRAINING SET\n'

for x in xrange(0, 4000):

#4000 learning iterations
 error=0.0

 dict={}

 index=0 #which composer we are currently looking at (0=Mozart, 1=Rachmaninoff)
 for composer in training:

 dict[index]=[]

 shuffle(composer)

#Randomize order of training
 for example in composer: #data for a piece

 error+=backprop(example, index)

 dict[index].append(example)

 index+=1

 #dictionary of training data created

 if x%200==0:

 print 'error = ',error

outfile=open('learned.txt','w')

for first in weights:

 line=''

 for elem in first:

 line=line+str(elem)+' '

 line=line+'\n'

 outfile.write(line)

outfile.close()

#Done!
5b. Description:

This code handles the actual learning of the neural network. First, a network is created, followed by a corresponding structure of weights. The code then reads and stores the information contained in “training_set.txt.” This file contains the outputs generated by the previously detailed code for various pieces of music. In a random order, the training data are sent one by one to the previously completed “backprop()” command, which lowers the error of the network by propagating the total error backwards to the individual nodes and adjusting their weights accordingly. When this process has been completed a certain number of iterations (here, 4,000) the resulting weights of the network are printed to a file so that they can be tested later.
4c. Code:

#Build weights:

weights=[]

infile=open('learned.txt', 'r')

line=infile.readline()

while not line=='':

 cur=line.split()

 nums=[]

 for elem in cur:

 nums.append(float(elem))

 weights.append(nums)

 line=infile.readline()

infile.close()
#Testing set:

infile=open('testing_set.txt', 'r')

training=[] #not really

cur_set=[]

line=infile.readline()

while not line=='':

if line[0]=='*':

#composer!
(or done)

if len(cur_set)>0:

training.append(cur_set[:])

cur_set=[]

line=infile.readline()

continue

str_nums=line.split()

nums=[]

for elem in str_nums:

final=elem

if ',' in elem:

final=final[:final.index(',')]

nums.append(float(final))

cur_set.append(nums)

line=infile.readline()

infile.close()

print 'Mozart tests: (expected output=0)'

avg=0

for elem in training[0]:

 cur= feedforward(elem)

 avg+=cur

 print cur

print '\tAverage: ', avg/(len(training[0]))

print 'Rachmaninoff tests: (expected output=1)'

avg=0

for elem in training[1]:

 cur=feedforward(elem)

 avg+=cur

 print cur

print '\tAverage: ', avg/(len(training[1]))

print '\nDone!'
5c. Description:

This code simply tests the results of the previous code. It uses the same neural network and weights structure, but the weights are filled in with the values generated by the other code (found in the “learned.txt” file). It then iterates through the testing data (provided by “testing_set.txt”) and feeds the data to the network one by one, printing each output. Once finished, the average output for each composer’s set of music is printed. These results show how accurately the network interpreted each given piece of music: we hope that music by Rachmaninoff receives an output close to 1 and that music by Mozart receives an output close to 0.
