
Computer-executed Genre Classification of Music
Computer Systems Lab 2009-2010

Alex Stabile

May 31, 2010

Abstract

The goal of this project is to write code that
can accurately group given pieces of music
into appropriate genres. Genres are often
generalities that may not perfectly fit a given
piece of music, but by analyzing different mu-
sical qualities we may determine what genre
best describes it. Computer code that can
accomplish this task could have applications
in sorting large libraries of music or suggest-
ing music to individuals based on musical
qualities, rather than comparing with com-
mon likes and dislikes. For ease of analyz-
ing notes, midi format music files are used
as input for the program. Python was used
to write classes that can read and store the
information contained in midi files, such as
note value, duration, and tempo. These data
are organized by grouping notes into their ap-
propriate beats. Organizing them in such a
manner allows for harmonic analysis, which
provides insight into how a piece is written
and what it sounds like. We theorize that this
information would be enough to distinguish
among basic genres of music. For this project,

music by Mozart was compared to music by
Rachmaninoff, two great composers with very
different compositional styles. A neural net-
work is trained by analyzing harmonic data
from a set of music by each composer, learn-
ing how to distinguish between the two even
with music it has not seen before. For future
research, analyses of other low-level musical
qualities may be implemented to provide a
fuller picture of a given piece.

Keywords: music, genre, naive, bayes

1 Introduction and Back-

ground

Current research often uses statistical mod-
els to determine how a given piece of mu-
sic should be categorized. One approach has
been to use Inter-Genre Similarity modeling
[2]. This project attempted to categorize mu-
sic by analyzing the timbral textures of a
short sample of music. These textures dif-
fer due to differences in instrumentation and
rhythm. Gaussian Mixture Models were used
to create the statistical model, and IGS to

1



cluster similar groups together. Their algo-
rithms grouped a 0.5 to 30.0 second sample
of music into one of nine genres. Longer sam-
ples yielded better results, up to 64 percent
correct. This somewhat low success rate is at-
tributed to the difficulty of machine analysis
of sound samples. Music has also been rep-
resented through a model of rhythmic com-
plexity [6]. With this method, rhythm was
represented in a tree structure and its over-
all complexity was determined. Results were
moderately successful, but the method of or-
ganizin notes could be useful in other at-
tempts at classifying music. Another ap-
proach attempted an automatic method of
classification that is completely general [3].
This was done by looking for mathematical
similarity, rather than features specific to mu-
sic. Midi files were used for musical analy-
sis, and very successful results were shown
when grouping music into rock, jazz, or clas-
sical genres. Results were moderately suc-
cessful when attempting to group pieces by
composer, but got worse as sample size in-
creased. Interestingly, the algorithm could
even cluster like file types together (sorting
out java class files, gene sequences from dif-
ferent species, and widely different styles of
music). One especially successful experiment
was ”On musical stylometry: a pattern recog-
nition approach” [1]. Different musical as-
pects of pieces were analyzed, and a statisti-
cal model was created to group new pieces
into their appropriate period. By analyz-
ing more musical characteristics, their model
became more fine-tuned. These characteris-
tics included harmonies, dissonance, note en-
tropy, and types of intervals. No method has

yielded or should be expected to yield per-
fectly successful resultseven many people can-
not successfully place music into its correct
genre.

2 Project Design

The first step of this project was to write
code for reading and organizing the informa-
tion stored in a midi file. A midi file is a
sequence of commands preceded by how long
to wait until they are executed (the delta-
time value). For the purposes of this project,
only the note-on and note-off commands and
their delta-time values are needed. This al-
lows code to determine which notes are play-
ing at the same time and which beat they are
a part of. This information is organized by
storing it in a Beat class. Each instance of a
Beat knows which notes sound on its down-
beat, and which notes sound off the beat. It
also contains which beat it represents from
the piece (beat 1, beat 2, etc.), and can be
sorted according to this number. To begin
obtaining the necessary data, code iterates
through a list of Beats and passes the notes
found within each one to a chord identifi-
cation method. This method returns what
chord most accurately represents that combi-
nation of notes, roughly emulating how har-
monic analysis is performed by a human, with
some exceptions. In reality, harmony may
change more than once within a beat. Also,
notes that are part of a melody may be clas-
sified as non-chord tones, and computer code
has no way of picking these out. However,
groups of notes that do not form a chord can

2



still be processed: the code simply tries dif-
ferent combinations of different amounts of
notes, looking for the most probable solution.
The chord identification code accurately re-
turns the key, quality, and inversion of a given
group of notes (e.g., B Flat Dominant Sev-
enth, Third Inversion). This information is
then written to an output file. When the en-
tire piece of music has been read, the out-
put file will contain every chord found on ev-
ery beat of that musical sample. An exam-
ple line of this file might read: Beat 12: C
Major, first inversion. Once these output files
are finished, the actual data to be analyzed
can be obtained. Though the inversion and
quality of every chord is determined, this in-
formation was not used in the final version
of the experiment. Instead, code reads the
output file to count how many chords are in
each relationship to the key of the piece. For
example, a piece in C Major would likely con-
tain many C, G, and F chords (the root, fifth,
and fourth, respectively). The code treats a
G chord in C Major the same as a D chord in
G Major because both chords represent the
fifth of each musical scale, and therefore per-
form the same role in their respective compo-
sitions. When every chord has been counted,
each count is divided by the number of the
beats in the piece, giving a ratio between
0 and 1 that represents how frequently that
chord was found in the music. Machine learn-
ing methods have been shown to be useful
in analyzing music due to their flexibility, so
a neural network was constructed to analyze
the data. Neural networks contain different
layers of ”perceptrons:” nodes that contain a
value and that are associated with a weight

(see figure 2.1). The input layer of the net-
work is at the left side, and consists only of
the different inputs the network will receive.
In this experiment, these inputs are the ratios
of different types of chords found in a piece.
Because there are 12 such ratios, the neural
network in this experiment has an input level
containing 12 perceptrons. The values of the
input layer are then ”fed” through the net-
work, assigning values to all the other nodes
(one step of this process is illustrated in fig-
ure 2.1). The output layer consists of just one
node, whose final value will represent what
the network has determined to be the style
of the music.

3



2.1 A Simple Neural Network

Source: http://galaxy.agh.edu.pl/ vlsi/AI /backp t en/backprop.html

When the network is created, weights are generated randomly for all the nodes. The
network is then ”trained” by giving it a data set containing inputs and their target outputs.
In this experiment, a piece by Mozart had a target output of 0 while a piece by Rachmaninoff
had a target output of 1. When the network produces a result, its weights are adjusted to
lower its error. To determine how the weights should be adjusted, the learning algorithm
known as back-propagation was used. This is a fast learning algorithm, an important quality
due to the number of inputs the neural network has to handle. Back-propagation starts by
calculating the error of the output node: the difference between the actual output and the
target output. This is error is then propagated backwards through the network to each
perceptron (as illustrated in figure 2.2). Weights are then adjusted based on the error
assigned to each perceptron, lowering the total error of the network. After thousands of
iterations, this process should yield a neural network that closely fits the training data.
Theoretically, analyzing enough data will yield a network consistent not just with the training
data, but also any inputs that may be thrown at it. The success of this project will be
evaluated by how accurately the network produces output for music it did not see in training:
compositions by Mozart should yield an output close to 0, and compositions by Rachmaninoff
should yield an output close to 1.

4



2.2 Propagation of error

Source: http://galaxy.agh.edu.pl/ vlsi/AI /backp t en/backprop.html

3 Results

In this experiment, 28 compositions were analyzed: 14 by Mozart and 14 by Rachmaninoff.
Each set of pieces was then split in two, with one half forming the training data and the
other half forming the testing data. The network was trained and then tested a number of
times, with varying amounts of learning iterations. It seemed that after 10,000 iterations,
results showed roughly the same degree of accuracy. However, all results were surprisingly
accurate: the average output from the testing data always rounded to the correct number,
and only differed from the target output by +/- 0.2. Pieces by Mozart should have an output
close to 0, while pieces by Rachmaninoff should have an output close to 1. The exact results
are in figures 3.1-3.4, where each row is the output for a given piece of music by the listed
composer.

5



3.1 4,000 Iterations:

3.2 10,000 Iterations:

6



3.3 14,000 Iterations:

3.4 20,000 Iterations:

7



4 Discussion

The results of this experiment suggest a rela-
tionship between the composer of a piece of
music and the types of harmonies found in the
piece. Music by Rachmaninoff and Mozart
was chosen to be analyzed because of their
very different styles, and by using a neural
network the computer could learn to reliably
differentiate between these two composers. It
seems that harmonies are one of the key rea-
sons that music from different time periods
and styles can sound so different. This ex-
periment could be extended and improved by
having access to more data, more composers,
and more musical analysis. While harmonies
seem to be important in defining an artists
compositional style, factors such as note en-
tropy, note density, and rhythmic complex-
ity could certainly play a role as well. With
more advanced networks and machine learn-
ing techniques, perhaps this greater amount
of data could be used to obtain even more
accurate results. Nevertheless, this project
has suggested that harmony is a key differ-
ence between music of different styles, a dif-
ference that humans may be trained to pick
up subconsciously but that a computer can
also learn to analyze and interpret.

References

[1] Backer, Eric, and Peter van Kranenburg.
On musical stylometry - a pattern recog-
nition approach. N. pag. Delft University
of Technology, 21 Jul. 2004. Web. 19 Jan.
2010

[2] Bagci, Ulas, and Engin Erzin. Inter
Genre Similarity Modelling for Auto-
matic Music Genre Classification. N.
pag. N.p., 18 July 2009. Web. 24 Oct.
2009.

[3] Cilibrasi, Rudi, Paul Vitanyi, and
Ronald De Wolf. Algorithmic Clustering
of Music. N. pag. University of Amster-
dam, 24 Mar. 2003. Web. 24 Oct. 2009.

[4] Dannenburg, Roger B., Thom, Belinda,
and David Watson. A Machine Learning
Approach to Musical Style Recognition.
344-347. pag. Carnegie Mellon Univer-
sity, Sep. 1997. Web. 19 Jan. 2010

[5] Kozbelt, Aaron, and Zahava Burger-
Pianko. Words, Music and Other Mea-
sures: Predicting the Repertoire Popu-
larity of 597 Schubert Lieder. 191-203.
pag. Psychology of Aesthetics, Creativ-
ity, and the Arts, Vol 1 Issue 4, Nov.
2007. Web. 25 Apr. 2010

[6] Liou, Cheng-Yuan, Tai-Hei Wu, and
Chia-Ying Lee. Modelling Complexity in
Musical Rhythm. N. pag. National Tai-
wan University, 26 Mar. 2007. Web. 24
Oct. 2009

[7] Lu, Cheng-Che, and Vincent Tseng.
A Novel Method for Personalized Mu-
sic Recommendation. N. pag. National
Cheng Kung University, 2009. Web. 6
Apr. 2010

8


