
Realtime Computational Fluid Dynamics
Simulations using the Lattice Boltzmann

Method
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Thomas Georgiou

January 22, 2010

Abstract

Fluid simulations are useful in many different areas ranging from
weather modeling to microscopic physics. Using the conventional
method of solving the districtized Navier-Stokes equations is very com-
putationally intensive and relatively hard to parallelize. The lattice
boltzmann method instead uses the discrete Boltzmann equation to
simulate Newtonian fluids using various collision models.

Keywords: computational fluid dynamics, lattice boltzmann meth-
ods, parallel computing

1 Introduction

Fluid dynamics are useful in a broad range of fields including meteorology,
computer graphics, aerodynamics, and microscopic physics. The purpose of
this project is to accelerate relatively new methods in the field of computa-
tional fluid dynamics in order to be able to run realtime simulations. This
includes using new methods that can be parallelized more effectively and vec-
torizing these methods and running them on new hardware using GPGPU
techniques.

1

2 Background

2.1 Boltzmann Equation

The Boltzmann equation

f(x+ vdt, v, t+ dt) = f(x, v, t) + Ω(x, v, t)

describes the time evolution of system of particles that interact with each
other via the collision operator Ω. It consists of two parts, streaming and
collisions. During streaming, particles are moved according to their velocities.
During the collision stage, the distribution functions (DFs) at each lattice
point undergo a collision operator, which is left as a choice.

2.2 The BGK collision operator

ΩBGK =
f − feq

τ

Collisions tend to push the system towards local equilibrium. This model is
computationally simple, yet accurate, making it ideal, and thus very popular,
for use in lattice Boltzmann Simulations. It is the one that I am using for
my project.

2.3 Lattice Gas Cellular Automata

One approach to fluid dynamics modelling is to make a hexagonal grid, with
every grid point having a set of 7 possible velocities, each pointing to the
neighboring lattice point, or staying still. No two particles can occupy the
same point with the same velocity. At each time step, particles move to the
next point dictated by their velocity. If another particle is also moving to
the same space, a collision model is used to determine where each particle
settles. From this microscopic model, macroscopic behavior consistent with
the Navier-Stokes equations emerges.

2.4 Discretization of Phase Space

In order to solve Boltzmann equation numerically, the domain must be dis-
trictized in phase space, consisting of time, configuration space, and velocity
space. Time is split up by time step. Configuration space is split apart into

2

a lattice with a discrete set of velocities connecting neighboring nodes. Lat-
tices are classified by a DnQm scheme where n is the number of dimensions
and m is the number of velocities. For example, D2Q9 is a two dimensional
lattice with 9 velocities connecting neighboring nodes (4 to each corner, 4 to
each midpoint, and 1 stationary).

Figure 1: Various lattice and velocity configurations

3 Procedure

The first steps of this project are learning the physics behind the boltzmann
equation and various collision operators. Then, I have to learn how the boltz-
mann equation is districtized into a lattice. Then, I will code a 2 dimensional
simulation in order to get a basic simulation working. Then, I will expand
it into 3 dimensions and start work on parallelizing and making sure it is
working correctly.

4 Implementation Details

Currently, my simulation is a D2Q9 simulation using the BGK collision op-
erator. It is programmed in the C programming language as this is a very
performance intensive project and I am more comfortable in C than in For-
tran. OpenGL is used to provide visualization display and input. For visu-
alization, a grayscale image is presented with each pixel taking on the value

3

proportional to the amount of fluid present at a lattice point. Mouse presses
currently add stationary fluid at the pointer location. OpenMP is used for
intra-node parallelism and MPI is used for inter-node parallelism.

Two steps are performed at each time step: the stream step and the
collision step.

4.1 The Stream Step

In the stream step, the first part of the Boltzmann equation is computed.
The distribution functions for each velocity at each lattice point are moved
to neighboring lattice points based on their velocity.

f(x+ ei, ei, t+ dt) = f(x, ei, t)

If a distribution function is hitting a boundary, then it undergoes the no-
slip boundary condition and stays at the same lattice point, except with the
inverse velocity.

f(x, eī, t+ dt) = f(x, ei, t)

This step is parallelized very easily. At each time step, the only commu-
nication that needs to occur between nodes is the transfer of the status of
neighboring nodes.

4.1.1 Streaming Code

#pragma omp p a r a l l e l for
for (int x = 0 ; x < SIZEX ; x++) {

for (int y = 0 ; y < SIZEY ; y++) {
i f (f l a g s [x] [y] == OBSTACLE) {

continue ;
}
for (int d = 0 ; d < DIRS ; d++) {

int nx = x + dx [d] ;
int ny = y + dy [d] ;
i f (f l a g s [nx] [ny] == OBSTACLE) {

//no s l i p boundary cond i t i on
domain [new] [x] [y] [I (d)] += domain [o ld] [x] [y] [d] ;
} else {

domain [new] [nx] [ny] [d] = domain [o ld] [x] [y] [d] ;
}

}
}

}

4

4.2 The Collision Step

In the collision step, the second part of the Boltzmann equation is com-
puted. The interactions that particles have with each other. The collision
operator is based off the fact that collisions tend to make the particles ap-
proach equilibrium, governed by the Maxwell-Boltzmann distribution. At
each time step, a finite number of collisions occur, so the particles are only
pushed partway towards equilibrium. So the particle distribution functions
after collisions are a mixture of the pre-collision distribution functions and
equilibirum distribution functions.

The equilibrium distribution is found by taking the low Mach number
expansion of the Maxwell-Boltzmann distribution√

m

2πkT
e
−mv2

2kT

yielding

f eq
i = wi(ρ+ 3ei · u−

3

2
u2 +

9

2
(ei · u)2)

where
ρ =

∑
fi

u =
∑

eifi

After computing the equilibrium distribution, the distribution functions are
then relaxed using the following relationship.

f(x, ei, t+ dt) = (1− ω)f(x, ei, t+ dt) + ωf eq
i

where ω is the parameter controlling the viscosity of the fluid. Values close
to 0 represent very viscous flows.

4.2.1 Collision Code

#pragma omp p a r a l l e l for
for (int x = 0 ; x < SIZEX ; x++) {

for (int y = 0 ; y < SIZEY ; y++) {
i f (f l a g s [x] [y] == OBSTACLE)

continue ;
f loat rho = 0 . 0 ;
f loat ux = 0 . 0 ; f loat uy = 0 . 0 ;

5

for (int d = 0 ; d < DIRS ; d++) {
rho += domain [new] [x] [y] [d] ;
ux += dx [d] ∗ domain [new] [x] [y] [d] ;
uy += dy [d] ∗ domain [new] [x] [y] [d] ;

}
i f (f l a g s [x] [y] == VELOCITY)

ux = 0.1∗ rho ;
for (int d = 0 ; d < DIRS ; d++) {

f loat eq = 0 . 0 ;
eq += rho ;
eq += 3∗(dx [d]∗ ux+dy [d]∗ uy) ;
eq −= (ux∗ux+uy∗uy) ∗3/2 ;
eq += (dx [d]∗ ux+dy [d]∗ uy) ∗(dx [d]∗ ux+dy [d]∗ uy) ∗9/2 ;
eq ∗= weights [d] ;
domain [new] [x] [y] [d] = (1−omega) ∗domain [new] [x] [y] [d] +

omega∗eq ;
}

}
}

4.3 Different Cell Types

In order to handle the different cell types such as obstacles, fluid, constant
velocity, gas, and interface cells, the type of each cell must be recorded. An
array the size of the domain is used for this.

4.4 Visualization

There are many methods to visualize fluids on a computer screen showing
different things from density to velocity to pressure to vorticity.

4.4.1 Density Plot

One way of visualization is to plot the density at each lattice point by setting
pixels to a color proportional to the amount of fluid present. This shows fluid
at each point, but fails to capture any other information such as velocity when
density is constant as is the case in incompressible flows such as water.

4.4.2 Particles

Non-fluid particles may be placed in the fluid. These particles are then
advected by the fluid at each timestep, using Euler’s method or moving the

6

particle by dt times the fluid velocity. The fluid velocity is computed by
finding the moments and then dividing.

v =
u

ρ

This shows how individual components of the fluid move and allows velocity
to be gauaged even in incompressible flows.

4.4.3 Velocity Vector Field

Another way of showing velocity is to draw the velocity vector field. On an
evenly spaced grid, vectors are drawn corresponding to the velocity at that
grid point. One drawback to this is that it is hard to cover a wide range of
velocities effectively.

5 Test Cases

5.1 Lid Driven Cavity

The lid driven cavity is a rectangular domain where the walls are non-slip
except for the top wall, which is non-slip, but moving at a constant velocity.
The simulation is setup to set the velocity of the fluid on the topmost row of
pixels to 0.01 in the right direction, for all except the rightmost pixels.

6 Expected Results

The project will be expected to yield a CFD code that is able to simulate
fluids in realtime. Physically correct results should be achieved, which will
be measured using fundamental laws such as conservation of mass. This can
be used in realtime predictions in various fields, for example control systems
dealing with fluids. The speedup techniques used can also be applied to make
larger simulations run faster.

7 Results

Current results consist of a simulation of a two dimensional fluid that can be
conducted in realtime on a single processor on a 300x300 grid. The simulation

7

Figure 2: In process lid driven cavity simulations visualized using particles

is currently unoptimized since I copy the memory at each timestep, which
while good for simplicity and getting a simulation up and running, is terrible
for performance.

A CUDA version is also implemented. Running this on a GPU is very
appealing because it is massively SIMD (single instruction multiple data). A
GPU has many threads that can simultaneously process the same instructions
on multiple data very efficiently. The Lattice Boltzmann method performs
the same operations on every lattice point.

Physically, the simulation visually appears to model correct fluid dynam-
ics behavior. However, using some code checks, I have found that mass in
the simulation is not conserved. This is a problem, since mass should always
be conserved. This is likely a result of the equilibrium distribution function
I am using and so I will need to check this in the future.

Issues have been found with the simulation when velocities exceed ap-
proximately 1

3
. Under these conditions, the fluid tends to stop being incom-

pressible and compress. The low mach number expansion of the Maxwell-
Boltzmann distribution also tends to deterioate. In addition, the problem
becomes ill-conditioned, yielding increased floating point error.

8

7.1 Performance

A widely used metric of Lattice Boltzmann codes is MLUPS or mega lattice
updates per second, meaning how many millions of gridpoints can be updated
in one second.

Single threaded performance:

Core 2 X9650 4.64 MLUPS
Xeon E5520 3.84 MLUPS

Multi threaded performance scales almost linearly under shared memory
systems using OpenMP. Using 4 threads on a Core 2 Quad X9650, 16.26
MLUPS are acheived.

Figure 3: Visualization of an in progress fluid simulation

8 Conclusion

Lattice Boltzmann methods are a very attractive alternative to conventional
fluid dynamics solvers since they exhibit accurate results and are much easier
to parallelize. With the decline of Moore’s law in serial performance, it
has been realized in many-thread performance. Because of this, the Lattice
Boltmzann method has become even more appealing as the future of fluid
simulations.

9

Figure 4: Visualization of an in progress fluid simulation

Figure 5: Visualization of an in progress fluid simulation using a velocity
field

10

8.1 Applications

One application would be to simulate dispersion of smoke or bio toxins inside
a large city such as New York. Emergency management teams could use this
information in order to more effectively control such outbreaks and prevent
against terrorist attacks.

References

[1] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision
processes in gases. i. small amplitude processes in charged and neutral
one-component systems. Phys. Rev., 94(3):511–525, May 1954.

[2] J. M. Buick and C. A. Greated. Gravity in a lattice boltzmann model.
Phys. Rev. E, 61(5):5307–5320, May 2000.

[3] Xiaoyi He and Li-Shi Luo. Theory of the lattice boltzmann method:
From the boltzmann equation to the lattice boltzmann equation. Physical
Review E, pages 6811–6817, December 1997.

[4] C. Körner N. Thürey, U. Rüde. Interactive free surface fluids with the
lattice boltzmann method. 2005.

[5] U. Rüde N. Thürey. Free surface lattice-boltzmann fluid simulations with
and without level sets. 2004.

[6] Sauro Succi. The Lattice Boltzmann Equation for Fluid Dynamics and
Beyond. Oxford University Press, Oxford, 2001.

11

