Realtime Computational Fluid Dynamics Simulations Using the Lattice Boltzmann Method

Thomas Georgiou

Thomas Jefferson High School for Science and Technology Computer Systems Lab

January 28, 2010

Thomas Georgiou (TJHSST)

CFD Simulations

January 28, 2010 1 / 18

Uses for Fluid Dynamics

- Computer Graphics
- Aerodynamics and Engineering
- Meteorology
- Oceanography
- Plasma Physics
- National Security
- and more

3

-

< 4 P→ -

The Boltzmann Equation

$$f(x + vt, v, t) = f(x, v, t) + \Omega(x, v, t)$$

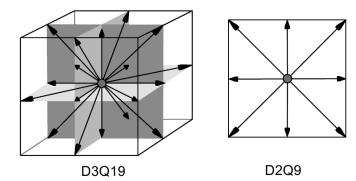
Conists of:

- Streaming
- Collisions

3

- ∢ ≣ →

Image: A match a ma


In order to solve the Boltzmann equation numerically, the domain must be split up into discrete components. This includes space, velocity, and time.

Naming Scheme

DnQm

- *n* is the number of space dimensions
- *m* is the number of velocities

Lattice and Velocity Configurations

3

イロト イヨト イヨト イヨト

The Stream Step

$$f(x+e_i,e_i,t+dt)=f(x,e_i,t)$$

Boundary:

$$f(x, e_{\overline{i}}, t + dt) = f(x, e_i, t)$$

Thomas Georgiou (TJHSST)

CFD Simulations

January 28, 2010 6 / 18

3

<ロ> (日) (日) (日) (日) (日)

The Collision Step

The BGK Collision Operator

$$\Omega_{BGK} = \frac{f - f_{eq}}{\tau}$$

Collisions tend to push the system towards local equilibrium.

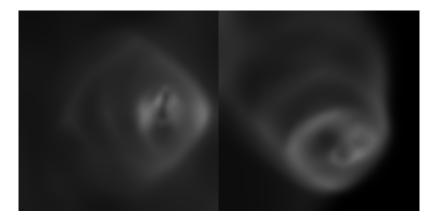
 f_{eq} is the equilibrium distribution function Low Mach number expansion of the Maxwell Boltzmann distribution:

$$\sqrt{\frac{m}{2\pi kT}}e^{\frac{-mv^2}{2kT}}\approx w_i(\rho+3e_i\cdot u-\frac{3}{2}u^2+\frac{9}{2}(e_i\cdot u)^2)$$

Relaxed towards equilibirum with:

$$f(x, e_i, t + dt) = (1 - \omega)f(x, e_i, t + dt) + \omega f_i^{eq}$$

Software Used for Implementation


• C

- OpenGL
- OpenMP
- MPI
- Qt4

3

・ロン ・四 ・ ・ ヨン ・ ヨン

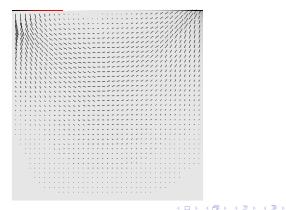
Visualization - Density Plot

Thomas Georgiou (TJHSST)

CFD Simulations

January 28, 2010 9 / 18

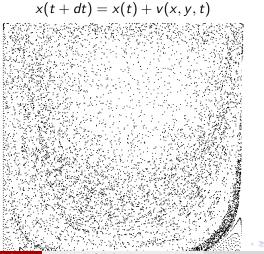
- 2


・ロト ・四ト ・ヨト ・ヨト

Visualization - Velocity Vector Field

• Compute velocity field from fluid distribution functions

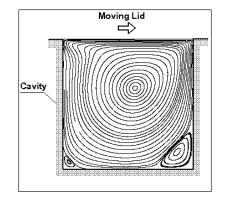
 $v = \frac{u}{\rho}$


• Draw grid of vectors along velocity

3

Visualization - Tracer Particles

- Particles placed in the fluid
- Advected using Euler's method



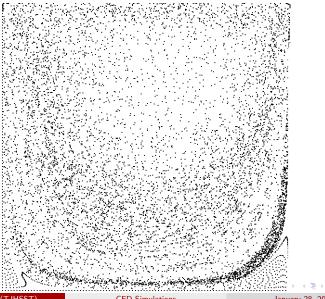
Thomas Georgiou (TJHSST)

CFD Simulations

January 28, 2010 11 / 18

Current Results - Lid Driven Cavity

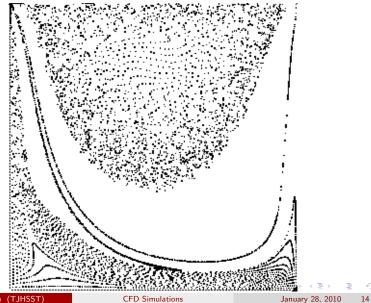
Thomas Georgiou (TJHSST)


CFD Simulations

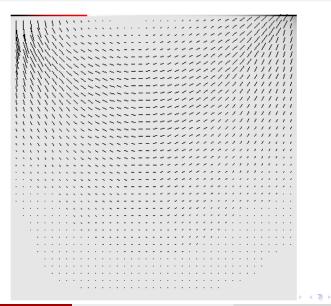
January 28, 2010 12 / 18

э

<ロ> (日) (日) (日) (日) (日)


Lid Driven Cavity

Thomas Georgiou (TJHSST)


CFD Simulations

Lid Driven Cavity

Thomas Georgiou (TJHSST)

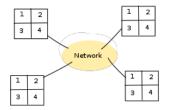
Lid Driven Cavity

Thomas Georgiou (TJHSST)

CFD Simulations

æ

Performance metric = MLUPS (Mega Lattice Updates per Second) Single threaded performance:


Core 2 X9650	
Xeon E5520	3.84 MLUPS

Multi threaded performance scales almost linearly under shared memory systems using OpenMP. Using 4 threads on a Core 2 Quad X9650, 16.26 MLUPS are acheived.

イロト 不得下 イヨト イヨト 二日

Next Steps - Performance

- The next step in improving performance is making the program parallelize across a network of nodes using MPI.
- MPI will be used with OpenMP.
- OpenMP intra node parallelism
- MPI inter node parallelism
- Initial results exceed 66 MLUPS using two nodes.

Next Steps - CUDA

- GPUs are massively data parallel SIMD
- Problem is very data parellel
- Each lattice update can be performed simultaneously
- CPU and GPU version will be connected together via MPI for improved performance

(日) (周) (三) (三)

- 31

Next Steps - Simulation

- More verification
- Lid Driven Cavity quantitative results
- Reynolds number
- Flow Past a Cylinder
- Free Surfaces

3

(日) (同) (三) (三)