On the Incremental Computation of Simplicial
Homology
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Brian Hamrick

January 25, 2010

Abstract

Homology groups are a fundamental algebraic invariant in algebraic topology that
allows the discrimination of topological spaces. Methods to compute the homology
groups of a simplicial complex are known in general, but they require expensive matrix
computations. For specific classes of simplicial complexes, both geometric and incre-
mental methods are known. However, these classes generally preclude the presense of
torsion in the homology groups. This paper investigates the possibility of an incremen-
tal homology type computation that can account for torsion and thus apply to a larger
class of simplicial complexes than previous results.

Keywords: algebraic topology, homology, algorithmic complexity

1 Introduction

Topology is the study of geometric structure on sets. One of the big questions of topology
is to determine when are two spaces essentially the same. Algebraic topology is a branch
of topology which computes algebraic objects which remain invariant when the underlying
structure remains the same. These algebraic invariants include homology groups which en-
capsulate certain characteristics about the underlying structure of the space. In this paper
I consider the homology groups of a certain class of spaces known as simplicial complexes.
Algorithms to compute these homology groups are known, but they are generally ineffi-
cient. This project will investigate the efficiency of various algorithms to compute these
homology groups. Improving the efficiency of such algorithms is applicable in experimental
mathematics, where computers can perform computations beyond the reach of human work.



2 Background

2.1 Previous Results

The computation of simplicial homology via reduction of the boundary matrices to Smith
normal form is rather classic. For sparse matrices, [1] gives an efficient algorithm to compute
the homology groups. This algorithms works in full generality; it will compute the homology
of any simplicial complex regardless of factors such as orientability. However, the algorithm
presented in [1] is probabilistic and the worst case analysis of the algorithm is unsatisfactory.
[4] describes a method by which simplicial complexes embedded in R? may be transformed
into a homotopically equivalent three-dimensional manifold, for which the homology groups
may be computed efficiently via classical results of the structure of such spaces. This method
allows deterministic computation of the homology type of a simplicial complex embedded
in R? in linear time, even faster than the probabilistic methods proposed by [1] for general
simplicial complexes. For the remainder of this paper, we investigate extensions of this
method to dimensions higher than 3.

2.2 Definitions

In this paper, we deal solely with triangulated spaces, so a general notion of a topological
space is unnecessary. We define a k-simplex as the convex hull of £ + 1 affinely independent
points in Euclidean space. A simplicial complex is the union of a set of simplices such
that the faces of any simplex in the complex are also in the complex, and the intersection
of two simplices of the same dimension is either empty or a face of both. We will refer
to n-dimensional Euclidean space as R™ and the n-dimensional halfspace as RZ, the set of
points in R” with nonnegative first coordinate. We will assume that manifolds in this paper
are closed and with boundary, so an n-dimensional manifold is a space such that there is
a neighborhood around each point homeomorphic to either R” or RZ. A continuous map
between topological spaces is a map f : X — Y is a map such that for every open set
U CY, the preimage f~(U) is an open set in X. A homeomorphism is a bijective map that
is continuous and has a continuous inverse. An embedding of a space X into R" is a map
f: X — R" that maps X homeomorphically onto its image.

3 Preliminary Results

3.1 The Abstract Incremental Algorithm

In this section, we will establish an abstract algorithm for incrementally computing the
homology type of a simplicial complex. We will work with a given simplicial complex K =
vazl 0;, where o; ranges over all the simplexes of K such that K; = U;':1 o; is a valid
simplicial complex for all . In this incremental algorithm, we will compute the homology
type of K; for all ¢, starting from ¢ = 1. The homology type of K; is trivial to compute:
H,(K;) =0 for all n.



Next, we need to analyze the incremental step. We wish to compute the homology type
of K; = K;_1Uo; from the homology type of K;_ 1. To do this, we will appeal to the Mayer-
Vietoris Sequence. Given two spaces A and B which cover a space X, the Mayer-Vietoris
Sequence relates the homology groups of A, B, AN B, and X. We’'ll apply this to our
simplicial complex with A = K, 1, B = 0;, and X = K;. The Mayer-Vietoris Sequence then
tells us that the sequence

H,(K;-1No;) — Hy(Ki—1) @ Hy(oy) = Hy(K;) —» Hy 1 (Kim1 Noy) — Hyog (KGq)

is exact for all n.

However, this relation can be simplified significantly. K, ; N o; = do;, the boundary
of 0;, as K; must be a valid simplicial complex, so the simplices forming do; must be in
K;, but they are also not o;, so they were in K; 1 as well while the interior of o; was not.
Furthermore, o; is homotopy equivalent to a single point, so H,(o;) = 0 for all n. Using
these simplifications, we find that the sequence

H,(90;) — Hy(Ki-1) — Hy(K;) — Hy1(903) — Hy1(Ki-1) (1)

is exact for all n.

Let us now consider three cases. If o; is a k-simplex, we consider n = k — 1, n = k, and
n # k — 1, k separately.

First, consider n # k — 1,k. Then we have H,(0o;) = H,_1(0do;) = 0. Therefore, (1)
tells us that 0 — H,(K;_1) — H,(K;) — 0 is exact, and it follows that H, (K; 1) ~ H,(K;).
Since this map from H,(K; 1) — H,(K;) is induced by the inclusion map ¢ : K; 1 — K;,
the generating set for H, (K;) is the same as the generating set for H,,(K;_1).

Second, consider n = k — 1. Then we have H,(do;) ~ Z and H,,_1(00;) = 0. Then
(1) yields that Hy 1(00;) = Hp (K1) — H,_1(K;) — 0 is exact, so Hy 1(K;) =
Hy 1(K;1)/t(Hy_1(00;)), where ¢, is the map induced by the inclusion ¢ : do; — K;_;.

Finally, consider n = k. Then we have H,(00;) = 0 and H,,_1(00;) ~ Z. Then (1) yields
that the sequence 0 — Hy(K; 1) — Hi(K5) L/ Hy 1(K;_q) is exact. 0,(Hy(K;)) is a
subgroup of Z, all of which are isomorphic to Z. Let x be an n-cycle that contains ¢; such
that the coefficient of o; is minimal but positive. Suppose that the coefficient of o; in z is a.
Then for any k-cycle y, the coefficient of o; will be a multiple of a, or else we can subtract
an appropriate multiple of x to find a k-cycle with a smaller coefficient of o;. Therefore, we
can write any k-cycle as cx + y, where z is our specific cycle containing o; and y is a k-cycle
class in K;_;. Then the homoology class of this k-cycle is simply c[x] + [y] where [z] is a new
generator and [y] is a homology class in Hy(K;_1). All the requisite propeties of the addition
operations can be verified to see that Hy(K;) ~ Z x Hp(K;_;) where the new generator is
our specific k-cycle x containing ¢; the minimum positive number of times.

Putting these together, we have the following tasks that need to be completed to create
a bona fide algorithm for incrementally computing the homology type and generating set of
a complex:

e Write the homology class of do; as a linear combination of the generating set for
Hy 1 (K1)



e Compute the quotient of Hy_;(K;_1) by the subgroup generated by the homology class
of do;.

e Detect whether a new k-simplex is part of a k-cycle.

o [f it exists, compute a k-cycle with the minimal positive coefficient of o;.

3.2 The One Dimensional Algorithm

Let us first consider the simple case of a one dimensional finite simplicial complex. The
result that we will expect from this algorithm is a number telling us the number of connected
components and the number of independent cycles in the complex, as well as a list of those
components and independent cycles.

Because our simplex is one dimensional, H,,(K;) = 0 for all n > 2 and all 4. Furthermore,
we only need to consider two operations: adding a 0-simplex and adding a 1-simplex.

Assume we are working on the step to compute the homology type and generators for K;
from that of K;_;. Let us first consider the case where o; is a 0-simplex. This 0-simplex was
not already in our complex, so it is not part of the boundary of any 1-simplex. Therefore,
this 0-simplex is independent of everything in Hy(K;_1), so we have Hy(K;) ~ Ho(K;_1) X Z,
where the new generator is simply the 0-cycle composed of this simplex.

Second, suppose o; is a 1-simplex. We know that Oo; is of the form y — x for two points
x and y. Let us treat o; as a path from z to y. There are now two cases:

In the first case, the two bounding points of o; are in different connected components (they
have distinct homology classes in K;_1). Then we have that Hy(K;) ~ Ho(K;_1)/t«(Ho(00;)).
Therefore, when we mod by the subgroup generated by [Jo;], we are simply modding by the
relation [x] ~ [y], so the result is that two elements of the generating set, corresponding to
[z] and [y], are associated. This simply corresponds to a reduction of the homology group
and its generating set. No other elements of the generating set are affected.

In the second case, the two bounding points of ¢; are in the same connected component.
Then if we add o; to an existing path from y to z, we have a 1-cycle that contains o; exactly
once, so it is a cycle containing ¢; the minimal positive number of times. We then know that
Hy(K;) ~ Hi(K;_1) X Z where the new generator is our found 1-cycle.

3.3 Implementation Details

Because of the low-dimensionality of this case, the task of writing do; as a linaer combina-
tion of the generating set for Hy_1(K;_1) is rendered moot by the fact that the generators
simply correspond to the connected components that the two endpoints lie in. Updating the
generator corresponding to each point is a relatively simple task. When we need to merge
two generators, we choose either one of them and mark all of the 0-simplices in its connected
component as belonging to the other connected component. In this way, each connected
component retains a canonical name, so that we may easily find all the O-simplices in any
given component.



Therefore, the only remaining task is that of finding the path from y to x in the last step
of the above section. To do this, we will use a floodfill algorithm. Breadth-first search is
used so that the shortest path is found and used. Because of the low-dimensionality, these
cycles are never modified in the generating set for the first homology group, so we use the
shortest path to simplify the output.

Each of these two operations is at most linear in the number of simplices, so this algorithm
takes at most quadratic time in the number of simplices.



References

[1] Bruce Randall Donald, David Renpan Chang, “On the complexity of computing the
homology type of a triangulation”, Proceedings of the 32nd annual symposium on Foun-
dations of computer science, p.650-661, September 1991, San Juan, Puerto Rico.

[2] Cecil Jose A. Delfinado, Herbert Edelsbrunner. “An incremental algorithm for Betti
numbers of simplicial complexes”, Proceedings of the ninth annual symposium on Com-
putational geometry, p.232-239, May 18-21, 1993, San Diego, California, United States

[3] Hatcher, Allen. “Algebraic Topology”. Cambridge University Press, Cambridge, 2002.

[4] Tamal K. Dey and Sumanta Guha. “Computing Homology Groups of Simplicial Com-
plexes in R3”, Proceedings of the 28th Annual ACM Symposium on Theory of Computing,
pp- 398-407, May 22-24, 1996, Philadelphia, Pennsylvania, United States.

[5] Patrick J. Morandi. “The Smith Normal Form of a Matrix”, Unpublished, February 17,
2005.



