On the Incremental Computation of Simplicial Homology

Brian Hamrick

Thomas Jefferson High School for Science and Technology Computer Systems Lab
October 26, 2009

Introduction

- Simplices
- Simplicial Complexes
- Singular Homology
- Simplicial Homology

http://commons.wikimedia.org/wiki/File:Simplicial_complex_example.svg

Homology

Homology

Computed from a chain complex of abelian groups

$$
\cdots \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{4}} C_{3} \xrightarrow{\partial_{3}} C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

- $\partial_{n} \circ \partial_{n+1}=0$
- $\operatorname{lm}\left(\partial_{n+1}\right) \subseteq \operatorname{Ker}\left(\partial_{n}\right)$
- $\operatorname{Im}\left(\partial_{n+1}\right) \unlhd \operatorname{Ker}\left(\partial_{n}\right)$
- The homology groups are defined as $H_{n}=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)$
- Singular Homology
- Simplicial Homology

Methods

- Matrix reduction to Smith normal form
- Incremental methods
- Geometric methods

Our Method

- Incremental

Our Method

- Incremental
- Based on the Mayer-Vietoris Sequence

The Mayer-Vietoris Sequence

An exact sequence relating homology groups. If A and B are two spaces whose interiors cover X, then

$$
\begin{aligned}
\cdots \rightarrow & H_{n+1}(X) \xrightarrow{\partial_{*}} H_{n}(A \cap B) \xrightarrow{\left(i_{*}, j_{*}\right)} H_{n}(A) \oplus H_{n}(B)^{k_{*}-l_{*}} H_{n}(X) \xrightarrow{\partial_{*}} \\
& \xrightarrow{\partial_{*}} H_{n-1}(A \cap B) \rightarrow \cdots \rightarrow H_{0}(A) \oplus H_{0}(B) \stackrel{k_{*}-I_{*}}{H} 0(X) \rightarrow 0
\end{aligned}
$$

is an exact sequence.

Incremental Method

- Idea: Add one simplex at a time, updating homology groups as you go.

Incremental Method

- Idea: Add one simplex at a time, updating homology groups as you go.
- A is our previous simplicial complex K_{i-1}, B is the new simplex σ_{i}, X is the new simplicial complex K_{i}.

Incremental Method

- Idea: Add one simplex at a time, updating homology groups as you go.
- A is our previous simplicial complex K_{i-1}, B is the new simplex σ_{i}, X is the new simplicial complex K_{i}.

$$
\cdots \rightarrow H_{n+1}\left(K_{i}\right) \rightarrow H_{n}\left(\partial \sigma_{i}\right) \rightarrow H_{n}\left(K_{i-1}\right) \rightarrow H_{n}\left(K_{i}\right) \rightarrow \cdots
$$

One Dimensional Complexes

Two operations:

One Dimensional Complexes

Two operations:

- Add a vertex

One Dimensional Complexes

Two operations:

- Add a vertex
- Add an edge

One Dimensional Complexes

Two operations:

- Add a vertex
- Add an edge
- Join two components (reduce H_{0})

One Dimensional Complexes

Two operations:

- Add a vertex
- Add an edge
- Join two components (reduce H_{0})
- Create a cycle (expand H_{1})

Future Work

- Higher dimensional simlpices

Future Work

- Higher dimensional simlpices
- How to write a cycle as a sum of the current generators?

Future Work

- Higher dimensional simlpices
- How to write a cycle as a sum of the current generators?
- Follow the cycle backward in time to write it in terms of generators from any time, then follow the result forward to find the combination of current generators.

Future Work

- Higher dimensional simlpices
- How to write a cycle as a sum of the current generators?
- Follow the cycle backward in time to write it in terms of generators from any time, then follow the result forward to find the combination of current generators.
- How to find cycles?

Future Work

- Higher dimensional simlpices
- How to write a cycle as a sum of the current generators?
- Follow the cycle backward in time to write it in terms of generators from any time, then follow the result forward to find the combination of current generators.
- How to find cycles?
- For two dimensional complexes where each one-simplex has at most two adjacent two-simplices, can use a floodfill.

Future Work

- Higher dimensional simlpices
- How to write a cycle as a sum of the current generators?
- Follow the cycle backward in time to write it in terms of generators from any time, then follow the result forward to find the combination of current generators.
- How to find cycles?
- For two dimensional complexes where each one-simplex has at most two adjacent two-simplices, can use a floodfill.
- Not sure for higher dimensions.

