
Authentication by Typing Characteristics
Using Dynamic Text

TJHSST Senior Research Project Research
Paper

Computer Systems Lab 2009-2010

Luke Knepper
luke@lukeknepper.com

January 26, 2010

Abstract

This project will analyze and test the accuracy of typing pattern
authentication methods when the user is prompted to type dynami-
cally generated text. The program will generate a random (i.e. dy-
namic) segment of text, measure the user’s keystrokes while they type
this text, and feed the typing data through a neural network to deter-
mine authentication status. Experimentation will be done to deter-
mine the most accurate neural network structures and data collection
conditions. This process will be an improvement on normal typing
pattern authentication techniques, which use static passwords rather
than dynamic text.

Keywords: authentication, security, typing patterns, neural net-
works

1 Background

1.1 Introduction

Current authentication techniques span all three tiers of security:

1



• Tier 1 - Identification (usernames)

• Tier 2 - Knowledge and Possession (passwords, ID cards, security ques-
tions, etc.)

• Tier 3 - Skills and Capabilities (captchas, voice recognition)

In the online world, usernames can be stolen, passwords and security
questions can be guessed, and captchas can be cracked. However, authenti-
cation using a user’s typing characteristics, a tier 3 security method, does not
have these weaknesses and further has numerous advantages over the other
approaches. Although authentication through analysis of typing characteris-
tics has been previously proposed, it is noted that previous approaches have
been restricted to the analysis of the user’s typing patterns when the user is
typing a simple, static word, such as U.S. Pat. No. 6,151,593 to Cho, et al
(2000). These approaches have a significant weakness, because someone with
malicious intent could create a program to record the characteristics of the
user’s keystrokes when typing this word and then simulate that process to
gain access to the user’s account. The approach presented herein addresses
that weakness by dynamically generating textual content for the user to type
and then analyzing the typing characteristics when the user enters that dy-
namically generated content into the system, thus creating a biometric for
that user which is compared to a previously captured biometric for that user.
The comparison is performed using a neural network which is trained using
the previously-measured typing characteristics. The results of the compari-
son are compared to a predetermined threshold to determine if the user will
be granted access to the system. This approach makes the authentication
algorithm considerably more secure since the text to be typed is dynamically
generated by the system and more advanced typing characteristics are used.

The authentication will be primarily done using neural network methods.
Neural networks are based off of the way that the human brain works: they
are made up of a bunch of nodes (like the brain’s neurons) which have inputs,
weights, and outputs (see FIG. 7 below). Each node collects its inputs,
performs a simple calculation on them (such as a sum), multiplies the total
by its weight, and then outputs the final total to the next node(s). The
network starts by an input vector (in this case the typing data) which gets
sent to the first level (or hidden layer) of nodes and passed down throughout
the rest of the layers. The final layer is a single node which outputs a value
between 0 and 1, with 1 being a success (or allowed access) and 0 being a

2



failure (or a rejection). A predetermined threshold determines how the final
value should be treated (i.e. if the value is above the threshold, it’s treated
as a 1, and vice versa).

There is currently a patent (US 6151593) for an authentication scheme by
typing pattern analysis. This method reads in the time between keystrokes
for a user when typing their password and then trains a three-layered neural
network to this combination. It does not allow for dynamically-generated
content to be used, and does not test the different lengths of passwords.
This is the most basic application of typing techniques for authentication,
and this patent application extends beyond these simple methods. Further,
multiple typing pattern log-in software packages exist, such as Psylock, but
they all have the same weakness as the patent above: they rely on a static
password instead of dynamic generated content.

Another team working under L. Maisuria compared the accuracy of neural
networks compared to cluster algorithms. A multi-layered perceptron-based
neural network which learned on the Hebbian learning theory was used, as
were ten different metrics to compare the clusters for the clustering. They
tested the different algorithms by recruiting twenty volunteers to participate
in three different sittings. In the first sitting, they all trained their neural
networks by typing in their password sixty times. In the next sittings, they
attempted to log in to their accounts and break into the accounts of oth-
ers. The sittings were spaced out by one week. The study found that the
clustering methods were slightly more accurate than the neural networks in
rejecting impostors. They only found an average of 80

An independent team of researchers, headed by Peacock et al., tested the
effect of many variations, including neural network set-up, password length,
acceptance stringency, data used, and function used. They found the most
effective neural network structure from their tests was to use a set-up where
many independent neural networks are trained on different cores (i.e. par-
allel processing) using randomly generated starting weight vectors. During
the training, the best weight vectors are picked and created using genetic al-
gorithms. They found the smaller (more stringent) acceptance ranges came
up with a good amount of false alarms (when it didn’t let the correct user
in, happened 22% of the time) but also minimized break-ins (when the in-
correct user was let in, happened 3% of the time). They also found the
most effective password length was 7 characters, a mid-sized password (the
longer passwords had no break-ins but many false alarms, and the shorter
passwords had many break-ins). They concluded that a linear evaluation

3



function was more effective than a quadratic function and that averaging
was more effective than counting each training run. They suggest their re-
sults can be improved (75% success, 22% false alarm and 3% break-in for
their best algorithm).

The main advantage of the approach described herein over previous ap-
proaches is the capability to authenticate a user based on a dynamically
generated chunk of text that the user is required to type in.

2 Drawings

FIG. 1 is a mockup of a log in screen for a computational system.
FIG. 2 is a mockup of a screen where the system will display some dy-

namically generated text to the user and require the user to type in that text
in order to authenticate the user.

FIG. 3 is a flowchart for training the authentication system.
FIG. 4 is a flowchart of the authentication algorithm
FIG. 5 is the GUI of the proof-of-concept program
FIG. 6 is the GUI of the data collection applet
FIG. 7 is a sample outline of a neural network

4



Figures 1.jpg

5



DIAGRAM.jpg

6



Diagram 2.jpg
FIG. 5:

7



FIG. 6:

3 Procedure

FIG. 1 shows the first stage of the authentication system, which resembles
a traditional log in screen. Users enter their username (1) and password

8



(2) which are checked against the database containing user information. If
the provided username and password match the information stored on the
database, the user is permitted access to stage 2.

FIG. 2 shows the second stage of the authentication system. A block
of text is dynamically generated and displayed to the user (3). The text
is generated randomly so that different text will appear each time the user
accesses the system. The text is generated by populating pre-defined sentence
structures with words chosen at random from pre-defined word lists. The user
is prompted to type the displayed text into a text field (4). While the user
is typing the text, the system records the time the user presses and releases
each key. If the text which the user types matches the dynamically generated
text, the user’s typing information is then passed on to the neural network
algorithm described in FIG. 3 (e.g., if the user is creating a new account) or
FIG. 4 (e.g., if the user is attempting to access an existing account).

FIG. 3 shows the process through which the neural network is trained
for each new user. This algorithm executes when the user is creating a new
account. The user is first authenticated via their username and password
(1) (as described in the first paragraph above). Then the program displays
dynamically generated random text (2) and measures the user’s typing data
(3) (as described in the preceding paragraph). The algorithm generates a
data vector, which is a vector representing the users typing characteristics,
from the typing data, and a weight vector, which is used by the neural
network, from random values (4). The data vector contains information that
is vital about the user’s typing characteristics, including but not limited to
time of depression of each key and time elapsed between each keystroke.
The weight vector contains values which represent the weights of each node
in the neural network. The neural network is made up of multiple layers of
nodes which each have given inputs, weights, and outputs. The first layer
of the network contains a node for every element in the data vector. The
last layer of the element contains only one node, which outputs the final
result. Hidden nodes in the middle layers provide an intermediary between
the first and last layers. Each node takes its given inputs from the previous
layer (or from the data vector, as is the case with the first layer), performs
a mathematical function on this data using the nodes values and weights,
and then outputs the final result to the next nodes (or as the final output of
the program, as is the case with the last layer). If the output is above the
threshold for acceptable values, it will be treated as an acceptable output for
authentication, and if it is not then it will not be sufficient for authentication.

9



The neural network must be trained when the user first creates an account
(5 and 6). The program runs data vectors to which it already knows the final
result (e.g. the data vector generated from the user’s typing, which has a
desired output value of 1 (or success), and data vectors stored in the database
generated from other users’ typing, which have desired value 0 (or failure))
through the network, and adjusts the weights to achieve the desired result
until the network returns the optimal result (i.e. changing the weight vector
does not improve the results to a measurable extent). If the value returned
with the new user’s data vector does not meet the threshold for acceptable
values, the training process is repeated with a new set of randomized weight
vectors. Once an optimal weight vector is created, it is stored in the database
under that user.

FIG. 4 describes the authentication algorithm which takes place when a
user attempts to access the system after having created an account. The user
is first authenticated via their username and password (1) (as described in the
first paragraph above). Then the program displays dynamically generated
random text (2) and measures the user’s typing data (3) (as described in the
second paragraph above). The algorithm generates a data vector, which is
a vector representing the users typing characteristics, from the typing data
(4) (as described in the preceding paragraph). The data vector is then run
through the neural network (5) to return a final output between 0 and 1. If
the output meets the threshold for acceptable values for authentication (6),
then the user will be granted access to the system; otherwise, the user will
be denied access.

4 Results

4.1 Proof of Concept

A simple proof-of-concept was completed in October ’09. The program
prompts two users to both type a sentence and uses their data to train a
simple single-layer neural network (shown in FIG 5). It then prompts the
users with a third sentence and instructs one of them, whose identity is un-
known to the computer, to type the third sentence. It runs the final data
through the trained neural network and determines which user typed the
third sentence.

10



5 Results and Conclusions

The proof-of-concept program has been tested twenty times, with the results
shown below:

• Trial 1 – Correct

• Trial 2 – Correct

• Trial 3 – Correct

• Trial 4 – Correct

• Trial 5 – Correct

• Trial 6 – Correct

• Trial 7 – Correct

• Trial 8 – Incorrect

• Trial 9 – Correct

• Trial 10 – Correct

• Trial 11 – Correct

• Trial 12 – Correct

• Trial 13 – Correct

• Trial 14 – Correct

• Trial 15 – Correct

• Trial 16 – Incorrect

• Trial 17 – Correct

• Trial 18 – Correct

• Trial 19 – Correct

• Trial 29 – Correct

11



There were 18 correct runs, 2 incorrect runs out of 20 total runs, for a 90%
accuracy overall. This shows that the concept can be used and refined to
create an accurate authentication system, however it supports the idea that it
cannot be a standalone system but instead will have to be used hand in hand
with traditional authentication methods, such as passwords and usernames.
The simple structure of the neural network leaves much to be desired.

5.1 Data Collection

A data collection applet (FIG 6) has been completed at posted on the in-
ternet. It has not yet been publicized, but has collected more than twenty
data samples already. Hopefully it will collect several hundred data samples
in the weeks to come. This data collection applet gave the user a segment
of random text (which was randomly selected from a large document of pre-
composed text, rather than being dynamically generated) and prompted the
user to type in this text to a textbox below. It recorded the users keystrokes
each time a key event was fired by saving the key’s number, key direction,
and keystroke time (in milliseconds). This data was sent to a server and
saved via a simple PHP script.

References

[1] Cho, S. and Han, D. ”Apparatus for authenticating an individual based
on a typing pattern by using a neural network system.”
http://www.freepatentsonline.com/6151593.html

[2] Maisuria, L. ”A COMPARISON OF ARTIFICIAL NEURAL NET-
WORKS AND CLUSTER ANALYSIS FOR TYPING BIOMETRICS
AUTHENTICATION.”

[3] De Oliveira Paula, Marcus V.S. et. al. ”User Authentication based on
Human Typing Pattern with Artificial Neural Networks and Support
Vector Machine ”

[4] Ponnath, Abhilash. ”Instantaneously Trained Neural Networks.”

[5] Peacock, A. et al. ”Typing Patterns: A Key to User Identification.”
http://www2.computer.org/portal/web/csdl/doi/10.1109/MSP.2004.89

12



[6] Stomski, Paul J. Jr. and Adel S. Elmaghraby. ”SELECTION OF A
NEURAL NETWORK FOR VISUAL INSPECTION.”

13


