COMPUTER SYSTEMS RESEARCH
Code Writeup 2009-2010

1. Your name: Mo Lu, Period: 04

2. Date of this version of your program: 01/28/2010

3. Project title: Coverage Efficiency in Autonomous Robots With Emphasis on Simultaneous Localization and Mapping Algorithms

4. Describe how your program runs as of this version.

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

Code

Inputs: Hard-coded matrix, 0's represent 1's represent obstacles, 9 Represents Robots, 2
represents unmowable terrain type.

Obstacles

Terrain Types, area input

Horizontal

Vertical

Diagonal

Circular (Problematic, see results)

Robot Class

Knows Location in Matrix

Knows Direction/Angle

Scan Method

Map Method

Move Ahead Method

Backtrack Method

Change Facing

Run Method

Angle Return Method

isBoundary

Scan Method

Scan 2 spaces ahead

Return distance until out-ping scan encounters a 1 or a undefined value (boundary)

Calculate location of the 1, based off current location

Recur, scan in 180 degree forward direction, increments of 0, 45 and 90 degrees

Return spaces that have a value of [1]

Map Method

Creates matrix of 0's

Store 1's in matrix

Move Ahead Method

while location+1!=[1] and isboundary(location)=false:

move ahead 1 space

if location+1=[1]

map(location+1)

newangle=scan(location)

moveahead(location, angle)

Backtrack Method(Location)

set robot coordinates to [x-1][y-1]

Change Facing(Location)

if at boundary of environment:

change facing 180 degrees

isBoundary(location)

if location+1=undefined

map(location+1)

return true

else

return false

Run

While Map()!=Environment

Scan()

Move Ahead{}

Results

[image: image1.jpg]000000000000000000
001000000000000000
001000000000111100
001000000000000000
001000000000000000
001000000000900000
000000111100000000
000100000000000000
000010000000000000
000001000000000000
000000100000000000
000000000000000000
000000000000000000
000000000000000000

Input 1

1=Obstacles
Horizontal, Vertical,
and Diagonal
Obstacles

9=Robot

[image: image2.jpg]111111111111111111
191000000000000001
101000000000111101
101000000000000001
101000000000000001
101000000000000001
100000111100000001
10§190000000000001
1000184000000000001
100001900000000001
10000§180000000001
100000000000000001
100000000000000001
111111111111111111

Output 1

Notice the border
broundaies and the
deadzone around
the diagional
obstacle.

[image: image3.jpg]000000000000000000
000000000000000000
009000111110000000
000001000001000000
000010000000100000
000010000000100000
000001000001000000
000000111110000000
000000000000000000
000000000000000000
000000000000000000

Testing, Errors, and Goals

These testing categories are dependent on obstacle and boundary recognition, obstacle mapping, location tracking, and unmowable terrain recognition. Current focus is on the testing of obstacle/boundary recognition and obstacle mapping. Testing for the current focus is determined by how accurate the obstacle map is when compared to the environment. Later, the simulation will be adapted for testing in a random matrix environment, and then a non-matrix based environment (ie. Live environment). This means that the program must be as reflective of reality as possible, so I will need to fix the errors I am having with diagonal and circular obstacles. With diagonal obstacles, the angle scanning method returns obstacles in a certain direction, such as the 45 degree. This makes the program incorrectly recognize the space ahead as an obstacle, so diagonals with one level too thick. Circular obstacles never complete the scanning process, because when the circle is more than 1 unit thick, the inside of the circle never gets scanned and there is an overflow error. Many conditions must be met for success of this project, if the original goal is to be met. Current goal is to successfully adapt the mapping program for use with LMS rangefinder. Future testing will address the accuracy of the mapping, with more advanced obstacle types, such as terrain types and polygons. Current analysis of the project is determined by the correlation of the obstacle map with the environment. When processing works, need to test for 1) Time Efficiency, 2) Coverage Percentage and 3) Backtracking.

