COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: ___Raghav Bashyal _, Period: __04_

2. Date of this version of your program: ____April 9, 2010___

3. Project title: ___Statistical Machine Translation (Spanish to English)___

4. Describe how your program runs as of this version. Include

-- files that may be needed

NLTK with numpy and matplotlib packages

Preinstalled corpus

Self-made corpus: text files located in usr_corpora folder, which is located in the same folder as the running program

-- algorithms, specific procedures or methods you wrote

Sentence Tokenizer

Load corpus

Word-probability calculation (bigram, trigram)

Smoothing

Collection of useful NLTK functions gathered in first quarter

-- kinds of input your program uses

Corpora:

Pre-installed corpora (example texts used in NTLK tutorial)

Self made corpora

Input text through GUI

-- screenshots, what kinds of output does your program have

[image: image1.jpg]O tk C)ER)

QuI | nput | Fertiities | spurious words | Transiations | choose positions |

-- does your program handle errors, or does it crash on errors of input?

Input errors would not crash the program, but probably would render the results useless. For example, unrecognized symbols will need special code that parses them correctly for the program and output. The structure of user-made corpora also needs to be uniform and properly coded into the program so that they can access the input correctly.

-- tests: summarize the basic analysis and testing of this version of your program

The program accepts text input either from the NLTK database, which can be accessed

using import, and with self-made corpuses, for which NLTK has special functions.

Currently, the program can break this text into clean sentences and calculate the

probability of words present in a certain amount of text. Although this is done pretty

accurately, the range of the program is limited.

The probability calculation (when using trigrams/bigrams) have not been tested through a corpus.

5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

I expect to implement the main model algorithm for translation (below). This will be my primary goal. I will also polish up the GUI, integrate corpora, and do testing.

#Model 3

1. For each English word ei indexed by i = 1, 2, ..., 1, choose fertility phi-i with probability

n(phi-i | ei)

2. Choose the number phi-0 of "spurious" French words to be generated from e0 = NULL, using

probability p1 and the sum of fertilities from step 1

3. Let m be the sum of fertilities for all words, including NULL

4. For each i = 0, 1, 2,, 1, and each k = 1, 2, ..., phi-i, choose a French word tau-ik

with probability t(tau-ik | ei)

5. For each i = 1, 2, ..., 1, and each k = 1, 2, ..., phi-i, choose target French position

pi-ik with probability d(pi-ik | i, l, m)

6. For each k = 1, 2, ..., phi-0, choose a position pi-0k from the phi-0 - k + 1 remaining

vacant positions in 1, 2, ...m, for a total probability of 1/phi-0!

7. Output the French sentence with words tau-ik in positions pi-ik (0<=i<=1, 1<=k<phi-i)

 OUTPUT:

//----- ACCESS PRE-INSTALLED COPORA ------ //

*** Introductory Examples for the NLTK Book ***

Loading text1, ..., text9 and sent1, ..., sent9

Type the name of the text or sentence to view it.

Type: 'texts()' or 'sents()' to list the materials.

text1: Moby Dick by Herman Melville 1851

text2: Sense and Sensibility by Jane Austen 1811

text3: The Book of Genesis

text4: Inaugural Address Corpus

text5: Chat Corpus

text6: Monty Python and the Holy Grail

text7: Wall Street Journal

text8: Personals Corpus

text9: The Man Who Was Thursday by G . K . Chesterton 1908

// ----- ACCESS USER-MADE COPORA ------ //

['hello', 'my', 'name', 'is', 'hello', '.']

my

name

Hello. My name is Jorge. I am a student at Thomas Jefferson High School for Science and Technology. I like to dance. What is your name?

Hola. Me llamo Jorge. Yo soy una estudiante en Thomas Jefferson Escuela Secundaria para Ciencia y Tecnologia. Me gusta bailar. Como te llamas?

// ----- TOKENIZE ------ //

<type 'str'>

['In the wild events which were to follow this girl had no\npart at all; he never saw her again until all his tale was over.',

...]

In the wild events which were to follow this girl had no part at all; he never saw her again until all his tale was over.

// ----- PROBABILITY CALCULATION (WORD:
citizens) ------ //

0.00157820701959

CODE

import nltk;

from nltk.tokenize import *;

from nltk.corpus import PlaintextCorpusReader;

import pprint;

from array import array;

from nltk.book import *;

from string import *;

corpus_root = 'usr_corpora';

wordlists = PlaintextCorpusReader(corpus_root, '.*');

wordlists.fileids();

#prints out the names of the files (including tags like .txt)

text = wordlists.words('testwords');

#prints out the words in file 'testwords'

print text;

print text[1];

print text[2];

f = open('usr_corpora/simple');

print f.read();

print type(f.read());

sent_tokenizer = nltk.data.load('tokenizers/punkt/english.pickle');

raw_text = nltk.corpus.gutenberg.raw('chesterton-thursday.txt');#f.read();

sents = sent_tokenizer.tokenize(raw_text);

pprint.pprint(sents[171:181]); # import nltk, re, pprint

#make all \n's into spaces

size = len(sents);

print size;

def removeline(st):

newstr = '';

for char in st:

if char != '\n':

newstr += char;

else:

newstr += " ";

return newstr;

#new_array;

#def removeline_array(newstr):

print removeline(sents[171]);

print split(sents[171]); #python function for splitting string into array of strings

def prob(word, text):

#print len(text);

#print text.count(word);

x = (float)(text.count(word))/(float)(len(text));

return x;

print prob('citizens', text4);

def bigram_x(first, second, text, size): #text = array sentences

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-1):

if index == 0 and array_sent[index] == first:

b_sum = b_sum+1;

if index == len(array_sent)-1 and array_sent[index] == second:

b_sum = b_sum+1;

if index != 0 and index != len(array_sent)-1 and array_sent[index] == first and array_sent[index+1] == second:

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

print bigram_x("wild","events", sents, size);

def bigram_prob(first, second, text, size): #text = an array of sentences

b(y|x) = num of occ. of "xy" / num of occ. of "x"

xy = (float)(bigram_x(first, second, text, size));

x = (float)(count(first, text));

print "x ",x;

return xy / x;

def count(word, text): #count number of occurrences of word in text, which is an array of sentences

ct = 0;

for x in text:

if word in x:

ct += 1;

return ct;

print 1/size;

print bigram_prob("wild", "events", sents, size);

Porbability of entire sentence

def prob_sent(sent): #returns probability of a sentence

take bigrams

for first and last cases, devise plan

start of sentence - send space

end of sentence is a period - send space

def trigram_x_with_markers(first, second, third, text, size):

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

def trigram_x(first, second, third, text, size): #text = array sentences

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if index == 0 and array_sent[index] == first: #start of sentence, s.o.s., x

b_sum = b_sum+1;

if index == 0 and array_sent[index] == first and array_sent[index+1] == second: #sos, x, y

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+2] == third: #z, end of sentence, e.o.s.

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+1] == second and array_sent[index+2] == third: #y, z, eos

b_sum = b_sum+1;

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

Porbability of entire sentence

def prob_sent(sent, text, size): #returns probability of a sentence

take bigrams

for first and last cases, devise plan

start of sentence - send space

end of sentence is a period - send spa

product =1;

loop from first to last-3

index = 0;

while (index <= len(sent)-3):

trg = trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

#trigram_p (xyz) = trigram_x(xyz) / bigram(xy)

product = product * trg;

index = index +1;

def trigram_x_smooth(first, second, third, text, size):

#0.95 * trigram_x +

#0.04 * bigram_x +

#0.008 * probability of z +

#0.002

def smooth_prob_sent(sent, text, size, ARRAY):

#ARRAY has smoothing coefficients

product 0;

index = 0;

while (index <= len(sent)-3):

trg = ARRAY[index] * trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

prob = trg+prob;

index = index +1

probability of a model:

P(model | test-data) = P(model) * P(test-data | model) / P(data)

^ P(test-data | model) = P(test-data)

perplexity of the probability of model (the smaller, the better):

perp = 2 ^ (-log(P(e)) / N)

log probability:

log(P(e)) = log(f1 * f2 * f3 *...* fn) = log(f2) + log(f3) ... log(fn)

