COMPUTER SYSTEMS RESEARCH
Portfolio Update 3rd Quarter 2009-2010
Research Paper, Poster, Slides, Coding, Analysis and Testing of your project's program.

Name: _Raghav Bashyal___, Period: _04 Date: __April 8, 2010

Project title or subject: ___Statistical Machine Translation (SMT)____

Computer Language: ____Python, NLTK__

Note: Now for full credit on all assignments you must provide specific plans and work using a degree of sophistication of algorithms and data structures at or beyond the level of APCS, AI 1/2, Parallel 1/2. Using shell programs or code available on the Web or in a book is not sufficient for full credit. You must provide actual development of your own code and research, analysis and testing of this code of your own. Be sure to list specific data structures, algorithms and coding you are doing at a sufficient level of sophistication for full credit. Also for full credit, you cannot merely repeat the same algorithms/data structures week after week – your program and your learning need to be evolving at a sophisticated level.

Describe the updates you have made to your research portfolio for 3rd quarter.

1. Research paper: Paste here new text you've added to your paper for 3rd quarter. Describe and include new images, screenshots, or diagrams you are using for 3rd quarter.

Specify text you've written for any of the following sections of your paper:

- Abstract

Using Natural Language Toolkit and Python, this project aims to create a translator as described by Kevin Knight.

- Introduction or Background

With the smoothing, the program has polished the preliminary probability-calculation stage. Using perplexity and logarithmic adjustments, which modify the probabilities so that they are on a normal plane of comparison, this section could be further improved.

Perplexity: This process is used to minimize the effect of a large data file on a small probability. To prevent them from become incomprehensibly small, perplexity can be used to normalize the values. “As P(e) increases, perplexity decreases. A good model will have a relatively large P(e) and a relatively small perplexity. The lower the perplexity, the better.” (Knight) This will be useful later, when unique models will be compared with each other.

Log Probability Arithmetic: A way of preventing the P(e) from underflowing (due to the numbers being so small). Using converted logarithmic values saves the numbers in manageable sizes, keeping the values from underflowing.

- Development section(s) – the work you've actually done

It then uses smoothing to adjust the probabilities calculated so that those that are calculated using singular words and bigrams are held at a lower level of significance than trigrams, which have three words to produce a confident probability.

Other pieces of the program include the Guided User Interface, which is in its preliminary stages and will be used for the going through singular steps of the translation process.

- Results – if you're reaching any preliminary conclusions

 A display of the probabilities of contending models would also be provided by the GUI.

- Additions to your bibliography

Charniak et. Al. “Syntax-based Language Models for Statistical Machine Translation.”Department of Computer Science, Brown University; Information Sciences Institute, University of Southern California.

Palmer, Martha and Wu, Zhibiao. “Verb Semantics and Lexical Selection.” National University of Singapore; University of Pennsylvania.

2. Poster: Copy in new text you've added to your poster for 3rd quarter.

List the titles you're using for each of your subsections. Include new text you're adding

- Subsection heading: Main Algorithm and text:

#Model 3

1. For each English word ei indexed by i = 1, 2, ..., 1, choose fertility phi-i with probability

n(phi-i | ei)

2. Choose the number phi-0 of "spurious" French words to be generated from e0 = NULL, using

probability p1 and the sum of fertilities from step 1

3. Let m be the sum of fertilities for all words, including NULL

4. For each i = 0, 1, 2,, 1, and each k = 1, 2, ..., phi-i, choose a French word tau-ik

with probability t(tau-ik | ei)

5. For each i = 1, 2, ..., 1, and each k = 1, 2, ..., phi-i, choose target French position

pi-ik with probability d(pi-ik | i, l, m)

6. For each k = 1, 2, ..., phi-0, choose a position pi-0k from the phi-0 - k + 1 remaining

vacant positions in 1, 2, ...m, for a total probability of 1/phi-0!

7. Output the French sentence with words tau-ik in positions pi-ik (0<=i<=1, 1<=k<phi-i)

· images, screenshots, or diagrams in your poster.

[image: image1.jpg]O tk C)ER)

QuI | nput | Fertiities | spurious words | Transiations | choose positions |

3. Presentation slides: Provide a brief outline summarizing the main points of your presentation for 3rd quarter

Smoothing

Coefficients used to modify probability

Large coefficients for trigrams

Small for bigrams and single words

Normalizes the weight of all the words/phrases

Trigrams are more valuable

Algorithm

For translation, IMB Model 3 is used:

1. For each English word ei indexed by i = 1, 2, ..., 1, choose fertility phi-i with probability

n(phi-i | ei)

2. Choose the number phi-0 of "spurious" French words to be generated from e0 = NULL, using

probability p1 and the sum of fertilities from step 1

3. Let m be the sum of fertilities for all words, including NULL

4. For each i = 0, 1, 2,, 1, and each k = 1, 2, ..., phi-i, choose a French word tau-ik

with probability t(tau-ik | ei)

5. For each i = 1, 2, ..., 1, and each k = 1, 2, ..., phi-i, choose target French position

pi-ik with probability d(pi-ik | i, l, m)

6. For each k = 1, 2, ..., phi-0, choose a position pi-0k from the phi-0 - k + 1 remaining

vacant positions in 1, 2, ...m, for a total probability of 1/phi-0!

7. Output the French sentence with words tau-ik in positions pi-ik (0<=i<=1, 1<=k<phi-i)

4. Coding: attach new code that you wrote 3rd quarter. Describe the purpose of this code in terms of your project's goal and research. Also provide clear commentary on the main sections of your code.

def bigram_x(first, second, text, size): #text = array sentences

[CALCULATES NUM OF OCURRENCES OF TWO WORDS]

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-1):

if index == 0 and array_sent[index] == first:

b_sum = b_sum+1;

if index == len(array_sent)-1 and array_sent[index] == second:

b_sum = b_sum+1;

if index != 0 and index != len(array_sent)-1 and array_sent[index] == first and array_sent[index+1] == second:

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

print bigram_x("wild","events", sents, size);

def bigram_prob(first, second, text, size): #text = an array of sentences

[CALCULATES PROBABILITY OF BIGRAM]

b(y|x) = num of occ. of "xy" / num of occ. of "x"

xy = (float)(bigram_x(first, second, text, size));

x = (float)(count(first, text));

print "x ",x;

return xy / x;

def count(word, text): #count number of occurrences of word in text, which is an array of sentences

ct = 0;

for x in text:

if word in x:

ct += 1;

return ct;

print 1/size;

print bigram_prob("wild", "events", sents, size);

Probability of entire sentence

def prob_sent(sent): #returns probability of a sentence

take bigrams

for first and last cases, devise plan

start of sentence - send space

end of sentence is a period - send space

def trigram_x_with_markers(first, second, third, text, size):

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

def trigram_x(first, second, third, text, size): #text = array sentences

[MAIN CALCULATOR OF THE NUMBER OF OCURRENCES OF TRIGRAM]

b_sum = 0;

t_size = size;

for sent in text:

index = 0;

array_sent = split(sent);

while(index <= len(array_sent)-3):

if index == 0 and array_sent[index] == first: #start of sentence, s.o.s., x

b_sum = b_sum+1;

if index == 0 and array_sent[index] == first and array_sent[index+1] == second: #sos, x, y

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+2] == third: #z, end of sentence, e.o.s.

b_sum = b_sum+1;

if index == len(array_sent)-3 and array_sent[index+1] == second and array_sent[index+2] == third: #y, z, eos

b_sum = b_sum+1;

if array_sent[index] == first and array_sent[index+1] == second and array_sent[index+2] == third: #x, y, z

b_sum = b_sum+1;

index = index +1;

#print index;

print "Hey ",index;

return b_sum;

Probability of entire sentence

def prob_sent(sent, text, size): #returns probability of a sentence

[PROABILITY THAT A SENTENCE WILL OCCUR]

take bigrams

for first and last cases, devise plan

start of sentence - send space

end of sentence is a period - send spa

product =1;

loop from first to last-3

index = 0;

while (index <= len(sent)-3):

trg = trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

#trigram_p (xyz) = trigram_x(xyz) / bigram(xy)

product = product * trg;

index = index +1;

def trigram_x_smooth(first, second, third, text, size):

#0.95 * trigram_x +

#0.04 * bigram_x +

#0.008 * probability of z +

#0.002

def smooth_prob_sent(sent, text, size, ARRAY):

[SMOOTHING]

#ARRAY has smoothing coefficients

product 0;

index = 0;

while (index <= len(sent)-3):

trg = ARRAY[index] * trigram_x(sent[index], sent[index+1], sent[index+2], text, size)/ bigram_x(sent[index],sent[index+1], text, size)

prob = trg+prob;

index = index +1

probability of a model:

P(model | test-data) = P(model) * P(test-data | model) / P(data)

^ P(test-data | model) = P(test-data)

perplexity of the probability of model (the smaller, the better):

perp = 2 ^ (-log(P(e)) / N)

log probability:

log(P(e)) = log(f1 * f2 * f3 *...* fn) = log(f2) + log(f3) ... log(fn)

 5. Testing, Analysis – specific listings/descriptions of the tests and analysis you've done this

 quarter.

The program accepts text input either from the NLTK database, which can be accessed

using import, and with self-made corpuses, for which NLTK has special functions.

Currently, the program can break this text into clean sentences and calculate the

probability of words present in a certain amount of text. Although this is done pretty

accurately, the range of the program is limited. The probability calculations (when using
trigrams/bigrams) have not been tested through a corpus.

5. Running your project – describe what your project's program actually does in it's current stage. Include current analysis and testing you're doing. Specifically what have you done this quarter.

Currently, the only parts of the program that run are the initial one-word
probability calculator and the GUI. The bigram and trigram calculators have
not been tested yet. The GUI is in its preliminary stages: All the buttons
are ready, and are waiting for the linked functions to be filled out. “Input”
for example simply prints the input text.

6. What is your focus for wrapping up your project for 4th quarter?

I expect to implement the main model algorithm for translation (below). This will be my primary goal.

#Model 3

1. For each English word ei indexed by i = 1, 2, ..., 1, choose fertility phi-i with probability

n(phi-i | ei)

2. Choose the number phi-0 of "spurious" French words to be generated from e0 = NULL, using

probability p1 and the sum of fertilities from step 1

3. Let m be the sum of fertilities for all words, including NULL

4. For each i = 0, 1, 2,, 1, and each k = 1, 2, ..., phi-i, choose a French word tau-ik

with probability t(tau-ik | ei)

5. For each i = 1, 2, ..., 1, and each k = 1, 2, ..., phi-i, choose target French position

pi-ik with probability d(pi-ik | i, l, m)

6. For each k = 1, 2, ..., phi-0, choose a position pi-0k from the phi-0 - k + 1 remaining

vacant positions in 1, 2, ...m, for a total probability of 1/phi-0!

7. Output the French sentence with words tau-ik in positions pi-ik (0<=i<=1, 1<=k<phi-i)

I will also polish up the GUI, integrate corpora, and do testing.

GUI:

I need to implement all of the functions listed in the GUI, which are really part of the algorithm. These need to be mapped to the buttons so that I can test the translation process step by step.

Integrate corpora:

I need to gather English, Spanish, and English-Spanish copora on which to do testing.

Testing:

For testing, I can either just make sure that the translation program is successful, or extend the project to include comparisons between the effectiveness of different algorithms.

