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1 MPI Optimization

Over a few days, I worked on optimizing the MPI version of my program
to lower the overhead of communication costs. Previously, I had interleaved
communication between the various steps of my program, but now that I
unified everything into one for loop, there is no place to interleave commu-
nication between the for loops.

So to minimize communication, I setup up asynchronous sends and re-
ceives. Then, I used the fact that the only reason communication is needed
is for the border cells of each subdomain. So what I do is initialize the
asynchronous communications, then compute the interior, majority of each
subdomain which does not depend on the communication. Then, I wait for
the communication to have finished, which hopefully it will have by then,
and then compute the border cells. This minimizes the impact of communi-
cation, allowing the mpi version to run faster, even on ethernet networks, to
a point.

// copy memory between nodes
// r e c e i v e r i g h t
i f ( rank < nodes−1) {

MPI Irecv ( domain+IDX( xr i gh t +1 ,0 ,0) , SIZEY∗DIRS , MPI FLOAT,
rank+1, 0 , MPI COMM WORLD, &reque s t s [ 0 ] ) ;

}
// r e c e i v e l e f t
i f ( rank > 1) {

MPI Irecv ( domain+IDX( x l e f t −1 ,0 ,0) , SIZEY∗DIRS , MPI FLOAT,
rank−1, 0 , MPI COMM WORLD, &reque s t s [ 1 ] ) ;

}
// send r i g h t
i f ( rank < nodes−1) {

MPI Isend ( domain+IDX( xr ight , 0 , 0 ) , SIZEY∗DIRS , MPI FLOAT,
rank+1, 0 , MPI COMM WORLD, &reque s t s [ 2 ] ) ;

}
// send l e f t
i f ( rank > 1) {

MPI Isend ( domain+IDX( x l e f t , 0 , 0 ) , SIZEY∗DIRS , MPI FLOAT,
rank−1, 0 , MPI COMM WORLD, &reque s t s [ 3 ] ) ;

}
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#pragma omp p a r a l l e l for
for ( int x = x l e f t +1; x < xr i gh t ; x++) {

proce s s ( x ) ;
}

// f i n i s h communication between nodes
for ( int n = 0 ; n < 4 ; n++) {

i f ( r eque s t s [ n ] != MPI REQUEST NULL) {
MPI Wait(& reque s t s [ n ] ,& s t a tu s ) ;

}
}
#pragma omp s e c t i o n s
{

#pragma omp s e c t i o n
{

int x = x l e f t ;
p roc e s s ( x ) ;

}
#pragma omp s e c t i o n
{

int x = xr i gh t ;
p roc e s s ( x ) ;

}
}

2 More Visualization

I worked on different ways to visualize my program so that I could better see
what the fluid is doing.

The first thing I did was to implement multicolored velocity magnitudes.
The way this works is that the velocity at each grid point is computed both
in the x and y directions. Then, the color for that grid point is determined
by the velocities. The red component is controlled by the horizontal velocity
and the green component is controlled by the vertical velocity. This allows
me to see in what direction the fluid at each point is moving and how fast.

//compute v e l o c i t y f i e l d
#pragma omp p a r a l l e l for
for ( int x = 0 ; x < SIZEX ; x++) {

for ( int y = 0 ; y < SIZEY ; y++) {
f loat rho = 0 . 0 ;
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f loat ux = 0 . 0 ;
f loat uy = 0 . 0 ;
for ( int d = 0 ; d < DIRS ; d++) {

rho += domain [ IDX(x , y , d ) ] ;
ux += dx [ d ] ∗ domain [ IDX(x , y , d ) ] ;
uy += dy [ d ] ∗ domain [ IDX(x , y , d ) ] ;

}
ux /= rho ;
uy /= rho ;
i f ( rho < 1e−3) {

ux = 0 . 0 ;
uy = 0 . 0 ;

}
vx [ x ] [ y ] = ux ;
vy [ x ] [ y ] = uy ;

}
}

g lBeg in (GL QUADS) ;
for ( int x = 0 ; x < SIZEX ; x++) {

for ( int y = 0 ; y < SIZEY ; y++) {
f loat ux = f ab s f ( vx [ x ] [ y ] ) ;
f loat uy = f ab s f ( vy [ x ] [ y ] ) ;
g lCo l o r 3 f ( ux∗ s ca l e , uy∗ s ca l e , 0 ) ;
g lVe r t ex2 i (x , y ) ;
g lVe r t ex2 i ( x+1,y ) ;
g lVe r t ex2 i ( x+1,y+1) ;
g lVe r t ex2 i (x , y+1) ;

}
}

3 Streamlines

Another visualization technique I added were streamlines. These are lines
that a particle would follow if it were to pass through the fluid. Compared to
particles, these show the path that would be taken at every timestep rather
than having to wait and watch the particles to figure out what is happening.
To implement this, I started at the rightmost side of the cylinder and at
evenly spaced nitervals and then moved backwards a fixed number of times
until I hit the left side. Every timed I moved backwards, I calculated the
derivative dy

dx
and then moved the streamline up or down corresponding to it.

But the streamlines would look very jagged since velocities were constant
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over every gridpoint, or a 2x2 pixel square onscreen. So I implemented
bilinear interpolation. This allowed me to transform the discrete velocity
field into a smooth, continous one, making the streamlines much smoother.
To do so, I linearly interpolated in the horizontal direction at two different
y values for each point. Then, I interpolated in the vertical direction using
the two previously computed values.

Streamline code:

for ( int y = 0 ; y < SIZEY ; y+=10) {
continue ;
g lCo l o r 3 f ( 0 . 1 , 0 . 8 , 0 . 1 ) ;
g lBeg in (GL LINE STRIP) ;
f loat x0 = SIZEX−1.5 ;
f loat y0 = y+0.5;
g lVer t ex2 f ( x0 , y0 ) ;
for ( int i = 0 ; i < SIZEX/1 ; i++) {

f loat x1 = f l o o r ( x0 ) ;
f loat x2 = c e i l ( x0 ) ;
f loat y1 = f l o o r ( y0 ) ;
f loat y2 = c e i l ( y0 ) ;
i f ( x1<0 | | x2 >= SIZEX | | y1 < 0 | | y2 >= SIZEY)

break ;
i f ( i snan ( x1 ) | | i snan ( x2 ) | | i snan ( x0 ) | | i snan ( y1 ) | |

i snan ( y2 ) | | i snan ( y2 ) | | i snan ( y0 ) )
break ;

f loat r1x = (x2−x0 ) /( x2−x1 ) ∗vx [ ( int ) x1 ] [ ( int ) y1 ] + (x0−x1 )
/( x2−x1 ) ∗vx [ ( int ) x2 ] [ ( int ) y1 ] ;

f loat r1y = (x2−x0 ) /( x2−x1 ) ∗vy [ ( int ) x1 ] [ ( int ) y1 ] + (x0−x1 )
/( x2−x1 ) ∗vy [ ( int ) x2 ] [ ( int ) y1 ] ;

f loat r2x = (x2−x0 ) /( x2−x1 ) ∗vx [ ( int ) x1 ] [ ( int ) y2 ] + (x0−x1 )
/( x2−x1 ) ∗vx [ ( int ) x2 ] [ ( int ) y2 ] ;

f loat r2y = (x2−x0 ) /( x2−x1 ) ∗vy [ ( int ) x1 ] [ ( int ) y2 ] + (x0−x1 )
/( x2−x1 ) ∗vy [ ( int ) x2 ] [ ( int ) y2 ] ;

f loat px = (y2−y0 ) /( y2−y1 ) ∗ r1x + (y0−y1 ) /( y2−y1 ) ∗ r2x ;
f loat py = (y2−y0 ) /( y2−y1 ) ∗ r1y + (y0−y1 ) /( y2−y1 ) ∗ r2y ;
f loat s c a l e f a c t o r = 1/(px ) ;
x0 −= px∗ s c a l e f a c t o r ;
i f ( abs (py∗ s c a l e f a c t o r ) > 20)

break ;
y0 −= py∗ s c a l e f a c t o r ;
g lVer t ex2 f ( x0 , y0 ) ;

}
glEnd ( ) ;

}
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