On the Incremental Computation of Simplicial Homology

Brian Hamrick

Thomas Jefferson High School for Science and Technology Computer Systems Lab
October 26, 2009

Introduction

- Simplices
- Simplicial Complexes
- Simplicial Homology

http://commons.wikimedia.org/wiki/File:Simplicial_complex_example.svg

Homology

Computed from a chain complex of abelian groups

$$
\cdots \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{4}} C_{3} \xrightarrow{\partial_{3}} C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0}
$$

- $\partial_{n} \circ \partial_{n+1}=0$
- $\operatorname{Im}\left(\partial_{n+1}\right) \unlhd \operatorname{Ker}\left(\partial_{n}\right)$
- The homology groups are defined as $H_{n}=\operatorname{Ker}\left(\partial_{n}\right) / \operatorname{Im}\left(\partial_{n+1}\right)$
- Simplicial Homology

Methods

- Matrix reduction to Smith normal form
- Incremental methods
- Geometric methods

Our Method

- Incremental
- Based on the Mayer-Vietoris Sequence

The Mayer-Vietoris Sequence

An exact sequence relating homology groups. If A and B are two spaces whose interiors cover X, then

$$
\begin{aligned}
& \cdots \rightarrow H_{n+1}(X) \xrightarrow{\partial_{*}} H_{n}(A \cap B) \xrightarrow{\left(i_{*}, j_{*}\right)} H_{n}(A) \oplus H_{n}(B) \xrightarrow{k_{*}-l_{*}} H_{n}(X) \xrightarrow{\partial_{*}} \\
& \quad \xrightarrow{\partial_{*}} H_{n-1}(A \cap B) \rightarrow \cdots \rightarrow H_{0}(A) \oplus H_{0}(B) \xrightarrow{k_{*}-l_{*}} H_{0}(X) \rightarrow 0
\end{aligned}
$$

is an exact sequence.

Incremental Method

- Idea: Add one simplex at a time, updating homology groups as you go.
- A is our previous simplicial complex K_{i-1}, B is the new simplex σ_{i}, X is the new simplicial complex K_{i}.

$$
\cdots \rightarrow H_{n+1}\left(K_{i}\right) \rightarrow H_{n}\left(\partial \sigma_{i}\right) \rightarrow H_{n}\left(K_{i-1}\right) \rightarrow H_{n}\left(K_{i}\right) \rightarrow \cdots
$$

One Dimensional Complexes

Two operations:

- Add a vertex
- Add an edge
- Join two components (reduce H_{0})
- Create a cycle (expand H_{1})

Two Dimensional Simplices

Three operations:

- Add a vertex
- Add an edge
- Add a triangle

Adding a Triangle

Two cases:

- Part of a cycle - cycle becomes a new generator in H_{2}.
- Not part of a cycle - boundary defines a new relation in H_{1}.
- How to write boundary in terms of the generators?

Keeping Track of the Generators

Introduce the concept of a fundamental cycle.

Definition

For an index i, if σ_{i} was the part of a cycle when it was first added, then a cycle which contains σ_{i} the minimal positive number of times is called the fundamental cycle S_{i}.

Theorem

The fundamental cycles of dimensions k form a generating set of the cycle group C_{k}.

Setup for the Algorithm

Variables to keep track of:

- The fundamental cycles S_{i} corresponding to σ_{i}.
- The generators G_{j} for H_{k} and their torsion coefficients T_{j}.
- The representation for each S_{i} in terms of the generators G_{j}.

Adding a Simplex

- Determine if the simplex is part of a cycle.
- If it is, add the cycle as a new generator with a torsion coefficient of 0 and as a new fundamental cycle.
- If not, write the boundary in terms of the generators, then compute the quotient of the next smaller homology group by the relation defined by the boundary.

Adding a Simplex

- Determine if the simplex is part of a cycle.
- If it is, add the cycle as a new generator with a torsion coefficient of 0 and as a new fundamental cycle.
- If not, write the boundary in terms of the generators, then compute the quotient of the next smaller homology group by the relation defined by the boundary.

Is σ_{i} Part of a Cycle?

- σ_{i} is one-dimensional
- Path finding problem
- σ_{i} is two-dimensional
- Each bounding edge must be cancelled out by a contribution from a neighboring simplex
- Floodfill

Adding a Simplex

- Determine if the simplex is part of a cycle.
- If it is, add the cycle as a new generator with a torsion coefficient of 0 and as a new fundamental cycle.
- If not, write the boundary in terms of the generators, then compute the quotient of the next smaller homology group by the relation defined by the boundary.

Writing a Cycle in Terms of Generators

- Start with cycle $Z=\sum c_{i} \sigma_{i}$.
- Initial representation $Z_{0}=0$.
- To create the next representation Z_{n+1}, take the latest nonzero term of $Z-Z_{n}$ by index, $c_{i} \sigma_{i}$. Then $Z_{n+1}=Z_{n}+c_{i} S_{i}$.
- The index of the last nonzero coefficient of $Z-Z_{n}$ strictly decreases with each iteration, so eventually $Z=Z_{n}$.
- Use stored representations of S_{i} in terms of the generators G_{i} to translate $Z=\sum d_{i} S_{i}$ into $Z=\sum e_{i} G_{i}$.

Computing Quotient of Homology Group

- Adding a single relation: $\partial \sigma_{i}=Z=\sum e_{i} G_{i}=0$.
- Smith Normal Form of $\left(\begin{array}{ccccc}T_{1} & 0 & 0 & \cdots & 0 \\ 0 & T_{2} & 0 & \cdots & 0 \\ 0 & 0 & T_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & T_{n} \\ e_{1} & e_{2} & e_{3} & \cdots & e_{n}\end{array}\right)$
- Column operations change generators and thus representations of the fundamental cycles

Performance Analysis

- Approximately one Smith Normal Form computation for each simplex.
- Sparse matrix
- Computation at each step is at most $O\left(\sum T_{i}\right)$ row and column operations
- $O(N)$ row and column operations per update for orientable surfaces

