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Introduction

@ Simplices
@ Simplicial Complexes

@ Simplicial Homology
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http://commons.wikimedia.org/wiki/File:Simplicial_complex_example.svg



Homology

Computed from a chain complex of abelian groups
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@ Im(Op+1) < Ker(0,)
@ The homology groups are defined as H, = Ker(9,)/Im(0n+1)

e Simplicial Homology



Methods

@ Matrix reduction to Smith normal form
@ Incremental methods

@ Geometric methods



Our Method

@ Incremental

@ Based on the Mayer-Vietoris Sequence



The Mayer-Vietoris Sequence

An exact sequence relating homology groups. If A and B are two
spaces whose interiors cover X, then

( .

s Hoa1(X) 2 Hy(ANB) ) Hy(A) B HA(B) S5 Ha(X) &
% Ho1(AN B) — -+ — Ho(A) & Ho(B) 5" Ho(X) — 0

is an exact sequence.



Incremental Method

@ Idea: Add one simplex at a time, updating homology groups
as you go.

@ A is our previous simplicial complex K;_1, B is the new
simplex o;, X is the new simplicial complex K;.

= Hpy1(Ki) — Hn(90) — Hp(Ki—1) — Ha(Ki) —



One Dimensional Complexes

Two operations:

o Add a vertex
@ Add an edge

e Join two components (reduce Hp)
o Create a cycle (expand H;)



Two Dimensional Simplices

Three operations:
o Add a vertex
o Add an edge
o Add a triangle



Adding a Triangle

Two cases:

@ Part of a cycle — cycle becomes a new generator in H>.
@ Not part of a cycle — boundary defines a new relation in Hs.
e How to write boundary in terms of the generators?



Keeping Track of the Generators

Introduce the concept of a fundamental cycle.

Definition

For an index i, if o; was the part of a cycle when it was first
added, then a cycle which contains o; the minimal positive number
of times is called the fundamental cycle S;.

Theorem

| A

The fundamental cycles of dimensions k form a generating set of
the cycle group Cj.




Setup for the Algorithm

Variables to keep track of:
@ The fundamental cycles S; corresponding to o;.
@ The generators G; for Hy and their torsion coefficients T;.

@ The representation for each §; in terms of the generators G;.



Adding a Simplex

@ Determine if the simplex is part of a cycle.

e If it is, add the cycle as a new generator with a torsion
coefficient of 0 and as a new fundamental cycle.

@ If not, write the boundary in terms of the generators, then
compute the quotient of the next smaller homology group by
the relation defined by the boundary.



Adding a Simplex

@ Determine if the simplex is part of a cycle.

e If it is, add the cycle as a new generator with a torsion
coefficient of 0 and as a new fundamental cycle.

@ If not, write the boundary in terms of the generators, then
compute the quotient of the next smaller homology group by
the relation defined by the boundary.



Is o; Part of a Cycle?

@ o; is one-dimensional
o Path finding problem
@ o} is two-dimensional

e Each bounding edge must be cancelled out by a contribution
from a neighboring simplex
o Floodfill



Adding a Simplex

@ Determine if the simplex is part of a cycle.

e If it is, add the cycle as a new generator with a torsion
coefficient of 0 and as a new fundamental cycle.

@ If not, write the boundary in terms of the generators, then
compute the quotient of the next smaller homology group by
the relation defined by the boundary.



Writing a Cycle in Terms of Generators

e Start with cycle Z =" ¢jo;.
@ Initial representation Zy = 0.

@ To create the next representation Z,1, take the latest
nonzero term of Z — Z, by index, ¢jo;. Then
Zni1 = 2y + ¢S

@ The index of the last nonzero coefficient of Z — Z,, strictly
decreases with each iteration, so eventually Z = Z,,.

@ Use stored representations of S; in terms of the generators G;
to translate Z = > d;S; into Z =) _ &G;.



Computing Quotient of Homology Group

e Adding a single relation: do; = Z =) e;G; = 0.

7 0 0 --- 0

O 7, 0 --- 0

0 T3 --- 0

@ Smith Normal Form of . . .
o o0 o0 --- T,

e1 e e -+ e

@ Column operations change generators and thus
representations of the fundamental cycles



Performance Analysis

@ Approximately one Smith Normal Form computation for each
simplex.

@ Sparse matrix

e Computation at each step is at most O(>_ T;) row and
column operations

@ O(N) row and column operations per update for orientable
surfaces



