Authentication Techniques by Typing
Characteristics
TJHSST Senior Research Project Research
Paper
Computer Systems Lab 2009-2010

Luke Knepper
luke@lukeknepper.com

April 6, 2010

Abstract

This project will examine various applications of authenticating
users by use of their typing characteristics. The purpose of this project
is to determine the effectiveness of analyzing the user’s typing patterns
in order to ensure user security. Log-in-time authentication and con-
tinuous authentication based on the user’s typing characteristics will
both be explored, analyzed, and tested. One application will analyze
the user’s typing characteristics when the user attempts to gain access
to, or log-in to, a system. Another application will measure the user’s
keystroke data while the user uses the program, and then feed the typ-
ing data through a neural network to determine authentication status.
A program simulating this method in use was created, and tests were
run to analyze the accuracy of using a neural network algorithm to
authenticate the user. This process will be beneficial to user security
because it will ensure that an intruder does not gain wrongful access
to a user’s account while that user is logged in to the system.

Keywords: authentication, security, typing patterns, neural net-
works

1 Background

1.1 Introduction
Current authentication techniques span all three tiers of security:
e Tier 1 - Identification (usernames)

e Tier 2 - Knowledge and Possession (passwords, ID cards, security ques-
tions, etc.)

e Tier 3 - Skills and Capabilities (captchas, voice recognition)

In the online world, usernames can be stolen, passwords and security
questions can be guessed, and captchas can be cracked. However, authenti-
cation using a user’s typing characteristics, a tier 3 security method, does not
have these weaknesses and further has numerous advantages over the other
approaches. Although authentication through analysis of typing characteris-
tics has been previously proposed, it is noted that previous approaches have
been restricted to the analysis of the user’s typing patterns when the user is
typing a simple, static word, such as U.S. Pat. No. 6,151,593 to Cho, et al
(2000). These approaches have a significant weakness, because someone with
malicious intent could create a program to record the characteristics of the
user’s keystrokes when typing this word and then simulate that process to
gain access to the user’s account. The approach presented herein addresses
that weakness by dynamically generating textual content for the user to type
and then analyzing the typing characteristics when the user enters that dy-
namically generated content into the system, thus creating a biometric for
that user which is compared to a previously captured biometric for that user.
The comparison is performed using a neural network which is trained using
the previously-measured typing characteristics. The results of the compari-
son are compared to a predetermined threshold to determine if the user will
be granted access to the system. This approach makes the authentication
algorithm considerably more secure since the text to be typed is dynamically
generated by the system and more advanced typing characteristics are used.

The authentication will be primarily done using neural network methods.
Neural networks are based off of the way that the human brain works: they
are made up of a bunch of nodes (like the brain’s neurons) which have inputs,
weights, and outputs (see FIG. 7 below). Each node collects its inputs,
performs a simple calculation on them (such as a sum), multiplies the total

by its weight, and then outputs the final total to the next node(s). The
network starts by an input vector (in this case the typing data) which gets
sent to the first level (or hidden layer) of nodes and passed down throughout
the rest of the layers. The final layer is a single node which outputs a value
between 0 and 1, with 1 being a success (or allowed access) and 0 being a
failure (or a rejection). A predetermined threshold determines how the final
value should be treated (i.e. if the value is above the threshold, it’s treated
as a 1, and vice versa).

There is currently a patent (US 6151593) for an authentication scheme by
typing pattern analysis. This method reads in the time between keystrokes
for a user when typing their password and then trains a three-layered neural
network to this combination. It does not allow for dynamically-generated
content to be used, and does not test the different lengths of passwords.
This is the most basic application of typing techniques for authentication,
and this patent application extends beyond these simple methods. Further,
multiple typing pattern log-in software packages exist, such as Psylock, but
they all have the same weakness as the patent above: they rely on a static
password instead of dynamic generated content.

Another team working under L. Maisuria compared the accuracy of neural
networks compared to cluster algorithms. A multi-layered perceptron-based
neural network which learned on the Hebbian learning theory was used, as
were ten different metrics to compare the clusters for the clustering. They
tested the different algorithms by recruiting twenty volunteers to participate
in three different sittings. In the first sitting, they all trained their neural
networks by typing in their password sixty times. In the next sittings, they
attempted to log in to their accounts and break into the accounts of oth-
ers. The sittings were spaced out by one week. The study found that the
clustering methods were slightly more accurate than the neural networks in
rejecting impostors. They only found an average of 80% to 90% accuracy
in rejection rate, not enough to comprise a stand-alone security system but
certainly good enough to be used in conjunction with traditional methods.
They found that all keystrokes should be measured, including the beginning
and end strokes to the enter key, for the highest accuracy. They found that
allowing impostors to observe the users typing before attempting to break in
to their accounts had little effect on the accuracy.

An independent team of researchers, headed by Peacock et al., tested the
effect of many variations, including neural network set-up, password length,
acceptance stringency, data used, and function used. They found the most

effective neural network structure from their tests was to use a set-up where
many independent neural networks are trained on different cores (i.e. par-
allel processing) using randomly generated starting weight vectors. During
the training, the best weight vectors are picked and created using genetic al-
gorithms. They found the smaller (more stringent) acceptance ranges came
up with a good amount of false alarms (when it didn’t let the correct user
in, happened 22% of the time) but also minimized break-ins (when the in-
correct user was let in, happened 3% of the time). They also found the
most effective password length was 7 characters, a mid-sized password (the
longer passwords had no break-ins but many false alarms, and the shorter
passwords had many break-ins). They concluded that a linear evaluation
function was more effective than a quadratic function and that averaging
was more effective than counting each training run. They suggest their re-
sults can be improved (75% success, 22% false alarm and 3% break-in for
their best algorithm).

The main advantage of the approach described herein over previous ap-
proaches is the capability to authenticate a user based on a dynamically
generated chunk of text that the user is required to type in.

2 Drawings

FIG. 1 is a mockup of an account set-up screen for a computational system.
FIG. 2 is a flowchart for training the authentication system.
FIG. 3 is a flowchart of the continuous authentication algorithm.
FIG. 4 is the GUI of the proof-of-concept program
FIG. 5 is the GUI of the data collection applet
FIG. 6 is the GUI of the continuous authentication simulation program

FIG. 1: STAGE 1

FLEASE TYPE THE FOLLOWING TEXT INTO
THE BOX BELOW:

DYMNAMICALLY GENERATED TEXT
APPEARS HERE....

TYPE THE TEXT HERE:
|

T 110

—1 120

210

220

230

FIG. 2: TRAINING ALGORITHM FLOWCHART

AL GORITH

!

AUTHENTICATE
LSER VIA
USERNAME /
PASSWORD

!

DYMNAMICALLY
GENERATE
FANDOM
TEXT

!

MEASURE
TYPING

240 ——

DATA

!

GENERATE DATA
VECTOR FROM DATA
AND WEIGHT VECTOR

FROM RANDOM

+

ADJUST EACH
WEIGHT IN WEIGHT
VECTOR TOWARDS

DESIRED RESULT
USING THE KNOWN
DATA VECTORS

!

CHECK IF
NETWORK MEETS
REQUIRED

THRESHOLD

YES

SAVE THE
WEIGHT VECTOR | —
UMDER THE
ID OF THE USER

!

FIG. 3: AUTHENTICATION ALGORITHM FLOWCHART

PROGRAM
START

& +

AUTHENTICATE
W — USER VIA
USERNAME /
PASSWORD

!

USER USES

320 ————| sySTEM FOR

GIVEN TIME
STEP

+

MEASURE
330 TYPING
DATA

i GRANT DEN

USER USE
GENERATE DATA ACCESS ACCE

VECTOR FROM DATA

{

RUMN DATA VECTOR
THROUGH NETWORK
LSING GIVEN USER'S

WEIGHT VECTOR

CHECK IF
RESULT MEETS
THRESHOLD

YES

M0 ——

350

7 |

Super Password Data Collection

Typer #1, please type:

the quick brown fox jumps over the lazy dog
<EMNTEE. =

Clear

FIG. 5:
Read this

Plezse type the following text 3t 3 comicrsble speed Inlo the area
betow and then press Cnier:
Y od elways krow aner vou ere iwo. Iwo s ihe beginnng of th2 end. It
courze they Iived a: 14, ard untd Werdy caTe 1ar mocher wras ts chief
ore. %12 wes a lowvely lady wih & -omartc Tind end such 8 sweel
moz<ing Touth.

w ENITEH =

Type here

FIG. 6:

|| Typing Security Simulation E] @ [ﬂ

-= Luke: Yeah, a little bit, but | made wou, so... -
*Leila is typing. .. "

™ Leila; Oh, wvou're no fun anymaore...

™ Leila: 50, tell me, if wou could hawve lunch with anyone in history,

whith whorm would ywou dine?

-= Luke: Probably Abraham Lincoln, because he was very

important.

<< WARMING LEVEL 20 > =
Leila is typing...

™ Leila: | like that!

™ Leila: 50, what's the best invention that anyone has ever

inventec?

-= Lulee: The Lighthulb, by far! t's so cool and crazy, wou lkknow
*Leila is typing. .. "

™ Leila: That's just lilkke mel

™ Leila: 5peaking of that, where do wou live?

| livie in Mclean, Virginia. Where do wou live?

3 Procedure

FIG. 1 shows an example GUI for the initial typing characteristics measure-
ment stage. A block of text is dynamically generated and displayed to the
user (110). The user is prompted to type the displayed text into a text field
(120). While the user is typing, the system records the time the user presses
and releases each key. Once the user has completed typing the dynamically
generated text, the user?s typing information is then passed on to the neural
network algorithm described in FIG. 2.

FIG. 2 shows the process through which the neural network is trained for
each new user. This algorithm executes when the user is creating a new ac-
count. The algorithm generates a data vector, which is a vector representing
the users typing characteristics, from the typing data, and a weight vector,
which is used by the neural network, from random values (240). The data
vector contains information that is vital about the user?s typing character-
istics, including but not limited to time of depression of each key and time
elapsed between each keystroke. The weight vector contains values which
represent the weights of each node in the neural network. The neural net-
work is made up of multiple layers of nodes which each have given inputs,
weights, and outputs. The first layer of the network contains a node for every

element in the data vector. The last layer of the element contains only one
node, which outputs the final result. Hidden nodes in the middle layers pro-
vide an intermediary between the first and last layers. Fach node takes its
given inputs from the previous layer (or from the data vector, as is the case
with the first layer), performs a mathematical function on this data using the
nodes values and weights, and then outputs the final result to the next nodes
(or as the final output of the program, as is the case with the last layer).
If the output is above the threshold for acceptable values, it will be treated
as an acceptable output for authentication, and if it is not then it will not
be sufficient for authentication. The neural network must be trained when
the user first creates an account (5 and 6). The program runs data vectors
to which it already knows the final result (e.g. the data vector generated
from the user?s typing, which has a desired output value of 1 (or success),
and data vectors stored in the database generated from other users? typing,
which have desired value 0 (or failure)) through the network, and adjusts the
weights to achieve the desired result until the network returns the optimal
result (i.e. changing the weight vector does not improve the results to a mea-
surable extent). If the value returned with the new user?s data vector does
not meet the threshold for acceptable values, the training process is repeated
with a new set of randomized weight vectors. Once an optimal weight vector
is created, it is stored in the database under that user.

FIG. 3 describes the authentication algorithm which takes to authenti-
cate the user. The algorithm is the same whether the system is continuously
monitoring typing patterns during program use or using a one-time mea-
surement of typing patterns at log-in time, with the only difference being
the log-in time algorithm generates text for the user to type at step 320.
The user is first authenticated via their username and password with which
they created their account on this system (310). Then the program mea-
sures the user’s typing patterns (320), either after a set amount of time for
continuous authentication or after prompting the user to type dynamically
generated text for log-in authentication. The program measures the user’s
typing characteristics by recording the times when keys on the keyboard are
depressed or released. This data is then used to compute statistics which
describe the user’s typing characteristics, e.g. the user depresses the A’ key
for a measured average of 80 milliseconds, or the user takes a measured av-
erage of 200 milliseconds between releasing the ’A’ key and pressing the 'B’
key. The algorithm generates a data vector, which is a vector composed of
the aforementioned statistics and representing the users typing characteris-

10

tics, from the typing data (340). The data vector is then run through the
neural network (350) to return a final output between 0 and 1. If the output
meets the threshold for acceptable values for authentication (360), then the
user will be granted access to the system; otherwise, the user will be denied
access.

4 Results

4.1 Neural Network Coding

Java classes which encompass the functionality of different types of neural
networks are being coded. At present, a simple single-layer neural network
has been completed and runs without error, and is currently being tested
for accuracy. A flexible multi-layer neural network is near completion, and
is currently in the de-bugging phase. The advantage of programming the
neural networks in this fashion is that they can easily be swapped between
programs, or during a program, for testing.

4.2 Proof of Concept

A simple proof-of-concept was completed in October '09. The program
prompts two users to both type a sentence and uses their data to train a
simple single-layer neural network (shown in FIG 5). It then prompts the
users with a third sentence and instructs one of them, whose identity is un-
known to the computer, to type the third sentence. It runs the final data
through the trained neural network and determines which user typed the
third sentence.

The proof-of-concept program has been tested twenty times, with the
results shown below:

e Trial 1 — Correct

e Trial 2 — Correct

Trial 3 — Correct

Trial 4 — Correct

Trial 5 — Correct

11

e Trial 6 — Correct
e Trial 7 — Correct
e Trial 8 — Incorrect
e Trial 9 — Correct
e Trial 10 — Correct
e Trial 11 — Correct
e Trial 12 — Correct
e Trial 13 — Correct
e Trial 14 — Correct
e Trial 15 — Correct
e Trial 16 — Incorrect
e Trial 17 — Correct
e Trial 18 — Correct
e Trial 19 — Correct
e Trial 29 — Correct

There were 18 correct runs, 2 incorrect runs out of 20 total runs, for a 90%
accuracy overall. This shows that the concept can be used and refined to
create an accurate authentication system, however it supports the idea that it
cannot be a standalone system but instead will have to be used hand in hand
with traditional authentication methods, such as passwords and usernames.
The simple structure of the neural network leaves much to be desired.

12

4.3 Data Collection

A data collection applet (FIG 5) has been completed and posted on the inter-
net at http://www.lukeknepper.com /research. It has been well publicized via
the use of social networks and viral marketing, and has collected in excess of
1,500 data samples, well more than are needed to run tests of neural network
accuracy. This data collection applet gave the user a segment of random text
(which was randomly selected from a large document of precomposed text,
rather than being dynamically generated) and prompted the user to type in
this text to a textbox below. It recorded the users keystrokes each time a
key event was fired by saving the key’s number, key direction, and keystroke
time (in milliseconds). This data was sent to a server and saved via a simple
PHP script.

4.4 Continuous Authentication Simulation

A program (FIG 6) has been nearly completed to simulate the continuous
authentication process in action. This program is a simulation of an instant
messenging program, where the user interacts with a pre-programmed bot
which randomly asks the user questions to which the user is supposed to type
answers. The program measures the user’s typing characteristics upon the
user’s first response, when the user is prompted to type a simple sentence
containing every letter of the alphabet, and trains a neural network to this
typing data. The program then measures the user’s typing characteristics for
every subsequent response and runs these data through the created neural
network. If the neural network does not output a sufficient value (i.e. one
that is greater than the standardized output) then the warning level is raised.
Once the warning level reaches the 100% threshold, the system shuts down
and locks the user out of the system. The warning level is lowered with every
response which matches the original typing characteristics.

This program currently runs without error and has been unofficially tested
by casual tests with other students in the Computer Systems Lab. It still
has a few areas which need to be refined before more intensive testing can
be performed on the simulation’s performance.

13

References

1]

Cho, S. and Han, D. 7 Apparatus for authenticating an individual based
on a typing pattern by using a neural network system.”
http://www.freepatentsonline.com/6151593.html

Maisuria, L. "A° COMPARISON OF ARTIFICIAL NEURAL NET-
WORKS AND CLUSTER ANALYSIS FOR TYPING BIOMETRICS
AUTHENTICATION.”

Nallusamy, R. and Dr. Duraiswamy, K. ”"Neural networks for dynamic
shortest path routing problems-A survey.” 2008.

De Oliveira Paula, Marcus V.S. et. al. ”User Authentication based on
Human Typing Pattern with Artificial Neural Networks and Support
Vector Machine ”

Ponnath, Abhilash. ”Instantaneously Trained Neural Networks.”

Peacock, A. et al. " Typing Patterns: A Key to User Identification.”
http://www2.computer.org/portal /web/csdl/doi/10.1109/MSP.2004.89

Stomski, Paul J. Jr. and Adel S. Elmaghraby. "SELECTION OF A
NEURAL NETWORK FOR VISUAL INSPECTION.”

14

