
Coverage Efficiency in Autonomous Robots With
Emphasis on Simultaneous Localization and Mapping

Algorithms
TJHSST Senior Research

Computer Systems Lab 2009-2010

Mo Lu

April 8, 2010

Abstract

Coverage efficiency is a major goal of certain
autonomous robotic systems. In the field of
robotic lawnmowing, coverage efficiency has
yet to be fully developed and there are differ-
ent methods to approach coverage efficiency.
The solution this paper covers is uses Simul-
taneous Localization and Mapping, known
as SLAM. Using a laser scanner, SLAM al-
gorithms create a map detailing the obsta-
cles of the enviornment. Once obstacles are
mapped, the algorithm process the map, and
dictates where the robot can move, where it
has moved, and where it currently is in rela-
tion to the obstacles. This data will enable
the robot to cover the entire lawn.

Keywords: map processing, area effi-
ciency

1 Introduction

Today, automated systems have supple-
mented humans in previously labor-intensive
tasks. Automated lawnmowers are an exam-
ple of these systems, but the currently avali-
abe technology in automated lawnmowing is
inefficient and primitive. This paper will pro-
pose and implement an alternate method to
automated lawnmowing, known as Simulta-
neous Localization and Mapping, then report
back the results.

2 Background

Commercial autonomous lawnmowers today
do not have processing systems appropriate
for efficient coverage. Current approaches to
commercial robotic lawnmowing operate un-
der the idea that if a lawmower is constantly

1



mowing the lawn, then the lawn stays con-
stantly mowed[1]. This is done by a series
of random cuts and turns, which if given
enough time, theroetically could cover an en-
tire unmowed lawn[1]. Another aspect of this
method is the use of ”bump-and-go” technol-
ogy. The system does not recognize the pres-
ence of obstacles until it actually hits it, and
when it does hit obstacles, it does not store
their locations for future use. This method is
horrifically innefficient in terms of time and
energy, when backtracking is taken into con-
sideration. Random cuts also contain the
possibility that a certain section of the lawn
will never get mowed. This project proposes
a different approach to this method: use of
mapping tecniques to recognize landmarks,
avoid obstacles, and naviagate an enviorn-
ment[4]. This method consists of three parts:
1) Use of a constantly updating laser scanner
to recognize obstacles, 2) Creation of obstacle
map using the laser data, and 3) Processing
that obstacle map for runtime efficiency[2].
Success is determined by how effectively the
robot avoids the obstacles and how quickly it
runs through the lawn.

3 Development

3.1 Theory

SLAM theory is centered around the map-
ping process. A laser scanner is mounted on
the robot, and pings out laser data in a 180
degree angle. The time it takes for the laser
to hit an obstacle determines how far the ob-
stacle is. These values are tracked by the sys-

tem while the scanner is constantly working,
and repeated obstacle values signify an ob-
stacle, which the robot maps in relation to
its current position. Once the obstacles are
mapped, the robot will be able to process the
most viable and efficient route through the
lawn, taking into consideration the obstacles,
terrain, and boundaries of the lawn. It will
also take account power sources and effective
runtime. The end result will enable the robot
to navigate and mow the lawn.

3.2 Project Work

Before the SLAM algorithims can be imple-
mented into a physical robot, it must first
run in a simulation. The current version
of the simulation consists of a pre-created
matrix based enviornment where the obsta-
cles and terrain have been set. The robot
is placed in the environment and keeps track
of its position and obstacles, via the use of
a coded coordinate system, a scanner mimic
which has a 2 space range, and a blank ob-
stacle map. As the robot moves and scans
through the enviornment, obstacles are rec-
ognized, and the robot begins to build on its
own independent matrix enviornment. The
output of this mapping process matches the
locations of the obstacles in the enviornment,
and gives the robot an idea of where it can
and cannot move in future mowings. The
current version of the program is advanced
enough to navigate and map vertical, hori-
zontal, diagional, and circular obstacles. It
also can recognize the boundaries of an en-
vironment. Currently, parts of this version
of the simulation have been adapted for use

2



with the SICK LMS Rangefinder. For the
most part, this has included translating the
’scanning’ methods of the simulation into
C++, which the rangefinder software sup-
ports, unlike Python. Also, this translation
has involved incorporating base code struc-
tures from the rangefinder software into my
code, most of which covers appropriate com-
mand calls for the rangefinder to send out
pings at certain rates. The concept behind
the rangefinder is nearly the same as the
mimic from the simulation; a ping out that
measures the time for the ping back, which
determines the distance to an obstacle. How-
ever, the limit of the rangefinder prevents
the robot from seeing past obstacles, so un-
obstructed environments cannot be sucess-
fully mapped at this point in the program.
Current version has been tested for a tri-
angular environment, which incorporates the
diagional, vertical, and horizontal obstacle
recognition. Also, analysis has been done on
the runtime effencieny of the simulation scan-
ning, in order to optimize certain sections and
clean up laggy code.

4 Testing and Analysis

The most general test of the performance of
the system is if it mows the lawn. This de-
pends on wether or not it maps the environ-
ment accurately. When efficiency is taken
into account, three new categories for testing
arise:

• Time efficiency

• Coverage precentage

• Backtracking

These testing categories are dependent on
obstacle and boundary recognition, obstacle
mapping, location tracking, and unmowable
terrain recognition. Current focus is on the
testing of obstacle/boundary recognition and
obstacle mapping. Testing for the current fo-
cus is determined by how accurate the ob-
stacle map is when compared to the environ-
ment. The simulation has not been tested
in a non-matrix based enviornment, but the
translated code has been tested in those types
of environments, but only to a certain degree.
The non-matrix based enviornments (physi-
cal environments) has given results, but only
the scanning has been tested. Many con-
ditions still must be met for success of this
project, if the original goal is to be met. This
involves on getting the robot to move without
assistance, in order to fully ensure that the
navigational aspects of the simulation can be
translated into the robot platform. Future
testing will address the processing aspect of
the program, with sucess determined by cov-
erage and time efficiency. Current analysis of
the project is determined by the correlation
of the map with the enviornment, along with
testing different types of environments.

5 Results

In the simulation, the robot is correctly
placed in the enviornment, and obstacles are
generated. See Fig. 1. Red represents
the lawnmower, yellow represents the bound-
aries.

3



Figure 1: Environment

Mapping algorithims print out a matrix-
based map. See Fig. 2. [1] represents an un-
moveable zone, and [0] represents moveable
zones.
Current inputs include diagional, vertical,
horizontal, and circular obstacles. See Fig.
3/4/5. Obstacles represented by figure 5 have
been tested with the rangefinder. See Fig. 6

6 Discussion

Before the SLAM algorithms can be imple-
mented into a physical robot, it must first run
in a simulation. The current version of the
simulation consists of a pre-created matrix
based environment where the obstacles and
terrain have been set. The robot is placed
in the environment and keeps track of its po-
sition and obstacles, via the use of a coded
coordinate system and a scanner mimic. The
robot moves and scans through the environ-
ment so long as obstacles are a certain dis-

Figure 2: Modified Environment

Figure 3: Input Environment: Diagional,
Vertical, and Horizontal

4



Figure 4: Input Environment: Circle

Figure 5: Output: Diagionals

Figure 6: Output: Triangular/Simulation

Figure 7: Output: Triangular/Rangefinder

5



tance away, and the environment map does
not equal the obstacle map. Obstacles are
recognized, and the robot begins to create its
own independent matrix environment. Since
the output of this mapping process matches
the locations of the obstacles in the envi-
ronment, it can be concluded that the scan-
ning and obstacle recognition works for cer-
tain obstacles. That, along with the robot’s
ability to keep track of its position gives all
the nessacary data to begin optimization al-
gorithims. The simuilation has been tested
for non-matrix based environments (graphic-
based). However, only the scanning por-
tion of the code has been tested in this en-
vironment. Because non-matrix based env-
iornments cannoot have a coordinate system,
the robot must process its location based off
odemetry (wheel movement calculations) and
its last known position. In order for this to
be tested, the robot must move on its own.
One problem that needs to be address in the
current code is the tendency to re-scan al-
ready known obstacle locations. Future ver-
sions will need to reflect more realistic condi-
tions such as terrain types and powersources.

7 Conclusion

The current version of the program gives all
the nessacary data for optmization process-
ing to begin. Also, the program is advanced
enough to be translated for use in a real envi-
ronment. However, movements still must be
considered and tested before the project can
be considered complete.

References

[1] Husqvarna, “Husqvarna Automower”,
http://www.automower.us, 2009.

[2] Sren Riisgaard and Morten Rufus Blas,
“SLAM for Dummies”, pp. 1-44, 2003.

[3] Ian Schworer, “Navigation and Control
of an Autonomous Vehicle”, pp. 1-84,
2005.

[4] Dustin Bates and Evan Dill, “The Ohio
University Autonomous Lawnmower”,
pp. 1-21, 2009.

[5] SICK Sensor Intelligence, “LMSIBS
Configuration Software and Operating
Instructions”, pp. 1-71, 2010.

[6] Se, Lowe, Little, “Mobile Robot Lo-
calization and Mapping using Scale-
Invariant Visual Landmarks”, 2004

6


