
Machine Learning of the College Admissions Process
TJHSST Senior Research Project

2009-2010

Sam Rush

April 7, 2010

Abstract

The goal of this project is to analyze the various biases that exist in the college
admissions system by attempting to predict college decisions. This project will attempt
to reduce college admissions to pure numbers, excluding data that is inaccessible such
as essays and teacher recommendations. Past user-submitted data from the 2007[3],
2008[2], and 2009[1] Senior Destinations websites will be used to train an artificial
neural network in a process known as machine learning to perform a nonlinear least
squares fit. Then, factors such as the gender bias and the race bias will not only be
proven to exist but will be quantifiable based on their role in the least squares fit.

Keywords: college admissions, machine learning, neural network, nonlinear least
squares, Gauss-Newton



1 Introduction

The college application process has become a hypercompetitive environment in which stu-
dents embark on a four year process of padding their reśumet́o look impressive to an admis-
sions officer. College admissions is often publicized as a wholistic process in which admissions
officers look at everything without “weighting” certain aspects of your application such as
GPA. Therefore students look to excel in all areas instead of taking the most efficient path,
which is not immediately obvious. So, how do we determine what’s really important to a
college? In this paper I attempt to answer that question.

2 Background

2.1 Machine Learning

Machine learning is the programming technique in which a programs behavior is altered ac-
cording to pre-existing data. A computers ability to learn is its ability to recognize patterns
among data sets and apply those patterns to other data. This is essentially data interpo-
lation. In this project, supervised machine learning is used to translate an N-dimensional
input vector into a single scalar output.

2.2 Senior Destinations

At TJHSST, it has become a tradition for one person in each class to create something
called the Senior Destinations website. This site enables those in each class to submit their
information (such as GPA, SAT scores, AP scores, etc.) along with where they applied and
what happened to each application. Data still exists from the Senior Destinations sites of
2007[3], 2008[2], and 2009[1] and will be used to train the neural network. I should note that
while a signifficant portion of the senior class does participate in this each year, the data is
somewhat skewed toward the higher achieving portion of the class, since they are more likely
to be enthusiastic about college and the admissions process.

3 Development

The project will consist of two parts: the 2010 Senior Destinations website and a College
Analysis website. The first site will be coded from scratch in order to be cleaner and more
complete than the previous years sites. The College Analysis website will deal with the
machine learning and analysis of college admissions.

2



3.1 Languages

3.1.1 PHP

PHP: Hypertext Preprocessor is the main language of this project. The output consists
of the standard web elements: Hyper Text Markup Language (HTML), JavaScript, and
Cascading Style Sheets (CSS). The websites will run on an Ubuntu Linux machine running
the Apache HTTP Server.

3.1.2 MySQL

MySQL is a Structured Query Language that is the storage engine for this project due to
its integration into PHP and its use with prior Senior Destinations websites.

4 Methodology

4.1 College Analysis Website

To make the College Analysis Website, data will first need to be imported from the Senior
Destinations sites and missing data will need to be filled in. For example, the classes of
2007, 2008, and 2009 do not have gender and race data readily available. This data will be
manually input by me using pictures from TJHSST yearbooks.

Another discrepancy between the data sets is the GPA. The class of 2010s GPAs are calcu-
lated in a different way from the other classes due to a system called FAIRGRADE[4]. Luck-
ily, at TJ, ones FAIRGRADE GPA can be fairly easily predicted from their pre-FAIRGRADE
GPA. To come up with a transformation between the two, I took the currently submitted
217 GPAs from the class of 2010 and 217 evenly distributed (by class rank) GPAs from the
classes of 2007 and 2008. Then, I plotted the pre-FAIRGRADE GPAs on the X-axis and
the FAIRGRADE GPAs on the Y-axis and took the quintic of best fit. This process works
on the assumption that the distribution of GPAs is constant from class to class.

3.1 Languages

3.1.1 PHP

PHP: Hypertext Preprocessor is the main language of this project. The output consists
of the standard web elements: Hyper Text Markup Language (HTML), JavaScript, and
Cascading Style Sheets (CSS). The websites will run on an Ubuntu Linux machine running
the Apache HTTP Server.

3.1.2 MySQL

MySQL is a Structured Query Language that is the storage engine for this project due to
its integration into PHP.

3.2 College Analysis Website

To make the College Analysis Website, data will first need to be imported from the Senior
Destinations sites and missing data will need to be filled in. For example, the classes of
2007, 2008, and 2009 do not have gender and race data readily available. This data will be
manually input by me using pictures from TJHSST yearbooks.

Another discrepancy between the data sets is the GPA. The class of 2010’s GPAs are
calculated in a different way from the other classes due to a system called FAIRGRADE[4].
Luckily, at TJ, one’s FAIRGRADE GPA can be fairly easily predicted from their pre-
FAIRGRADE GPA. To come up with a transformation between the two, I took the currently
submitted 60 GPAs from the class of 2010 and 60 evenly distributed (by class rank) GPAs
from the classes of 2007 and 2008. Then, I plotted the pre-FAIRGRADE GPAs on the X-axis
and the FAIRGRADE GPAs on the Y-axis and took the quintic of best fit. This process
works if you make the fair assumption that the distribution of GPAs is constant from class
to class.

3.4 3.6 3.8 4.0 4.2

4.0

4.2

4.4

-0.9654 x4
+ 14.437 x3

- 80.383 x2
+ 198.39 x - 179.93

Figure 1: FAIRGRADE GPAS plotted versus Non-FAIRGRADE GPAs, with the quartic of
best fit (R2 = .9903) as the interpolation function.

2

Figure 1: FAIRGRADE GPAs plotted versus Non-FAIRGRADE GPAs with quartic of best
fit (R2 = .9903) as the interpolation function

3



4.2 Least Squares Analysis

The program will perform a least squares analysis in order to find a function f(x1, x2, ..., xn) =
c of best fit to the college admissions data with which it is being trained. The least squares
approach guarantees us that for our given form, the function f which is found produces the
most accurate results. The procedure then goes as follows:

1. Create a matrix A of the form


a1,1 a1,2 . . . a1,n 1
a2,1 a2,2 . . . a2,n 1

...
...

...
...

...
am,1 am,2 . . . am,n 1

 such that ai,j represents

the jth factor for the ith person in the training data. The 1 represents the constant
term that may need to exist in the predictive algorithm, which essentially relaxes the
problem encountered by ill-defined outcomes. Note that this matrix must need not be
square.

2. Create a vector B of the form


d1
d2
...
dm

, where di is a number representing the decision

for the ith student in the training data.

3. Create a vector x of the form


x1

x2
...
xn

, where xi is the weight which will be applied to

the ith factor at the end. Note that xi is just a variable. Our goal will now be to solve
the inconsistent1 matrix system Ax = B using the method of a linear least squares fit.

4. Obtain the QR decomposition of A. Essentially, we want to find an orthogonal2 matrix
Q and an upper-triangular3 matrix R such that QR = A. Q can be obtained using
the Gram-Schmidt orthogonalization process[6]. R can be obtained by: A = QR →
QTA = QTQR→ QTA = R.

5. Solve the matrix system R′x = (QTB)′, where R′ is the upper nxn submatrix of R and
(QTB)′ is the upper n rows of vector QTB. This system can be solved using gaussian
elimination[7]. In gaussian elimination, we use an augmented matrix A|B and form an
upper triangular matrix A by successive “eliminations” of columns. Partial pivoting
is used to avoid ill-conditioning4 and the case of a 0 on the diagonal, which causes
the system to be inconsistent[6]. After an upper-triangular matrix is obtained, x can

1A system is inconsistent if it has more linearly independent equations than variables
2A matrix is said to be orthogonal if QTQ = I, where I is the identity.
3A matrix is said to be upper-triangular if all entries below the diagonal are 0
4Conditioning refers to the extent to which numerical algorithms are subject to rounding errors.

4



be found by “back-solving” for each component starting from the bottom and then
substituting the value of that component into the next equation.

6. The x we have now obtained is the least squares solution to our inconsistent system
Ax = B. We can now run students through this program simply by multiplying the
row vector

(
a1 a2 . . . an 1

)
for that student by x to obtain a scalar p. Currently,

I am not dealing with wait-list decisions, so to obtain the prediction for that student,
I simply round p to the nearest integer, which will be 1 (accept) or 0 (reject).

4.2.1 Further Development

The reason that I took this complicated approach to finding a simple linear regression is that
I can now very easily expand this method to nonlinear least squares fits with varying forms.
Essentially, I can now alter the form of my function f , which is currently x1a1 +x2a2 + ... to
anything which I want, or in this case what the machine learns is the best without sacrificing
significant computing power. By decomposing A into QR, I have ensured that it the least
squares computation for any alteration of the form and/or resultant vector is O(m ∗ n), or
linear in the number of data I have. This will allow a neural network to train the computer
to learn the optimal form of the function f with the assistance of the Gauss-Newton method
for nonlinear least squares.

5 Testing

After the predictive algorithm has been trained by the past admissions’ data, the TJHSST
class of 2010’s application data will be run through the program and the computer will output
its predictions of each result. The predictions will be compared with the actual results for
accuracy. Then, the algorithm will be retrained with the inclusion of the 2010 data. With
four years of data, I can then begin to investigate biases for each individual college. The
gender weight, which I will call G, is the node in the neural network that will quantify the
gender bias of the system. That is, if the weight is positive, males are more likely to be
accepted than females and vice versa. Similarly, there will be weights for each race which
will quantify those biases as well.

6 Expected Results

I expect that when introduced to a nonlinear prediction system, the program will be able
to predict upwards of 80% of applications for most schools with copious data. Note: I will
count a waitlist decision as half of an acceptance plus half of a rejection for these purposes.

5



7 Current Results

Currently, the computer does a decent job at predicting admissions based only on GPA, SAT
scores, and Gender with only a linear regression. Below is a table of prediction rates for a
small sample of the class of 2010’s applications.

College # Correct Out of Prediction Rate
Brown University 16 22 72.7%
Cornell University 28 37 75.7%
Duke University 16 20 80%
University of Pennsylvania 16 21 76.1%
University of Virginia 78 83 93.9%
Virginia Tech 40 40 100%

Table 1: A sample of prediction success for various colleges.

To illustrate the regression that the machine currently uses, I have included graphs with
only SAT and GPA (obviously with a 3rd parameter, we would not have enough physical
dimensions to view the graph) below.

Figure 2: SAT vs. GPA vs. Prediction for the University of Virginia

6



Figure 3: SAT vs. GPA vs. Prediction for the University of Pennsylvania

7.1 Discussion

The varying prediction rates in Table 1 can be attributed to the current constraint that the
regression be linear. The machine will next learn the best form of the regression instead of
being restricted. The scattergram for Brown University in 2010 appears wildly random, yet
the machine can pick out the correct people with decent accuracy.

The two graphs illustrate the different methodologies that these two institutions use to
select their students. UVA’s graph has a steep slope in the GPA direction and an almost
unnoticable slope in the SAT direction, indicating that it cares a lot more about your GPA
than your SAT. Penn’s graph, on the other hand, has a much larger slope in the SAT
direction, but still a greater slope in the GPA direction, indicating that your SAT will be
a determining factor in your application, but not as much as your GPA will. Also notice
the scales on the axes for the two graphs. A much larger percentage of the UVA graph is in
the “accept area” (greater than 0.5 on the z-axis) than the Upenn graph. This should make
sense, as it UPenn is generally harder to get into than UVA.

8 Final Results

There will not be any final results until the conclusion of the course. Otherwise, the results
would, by definition, not be final.

7



References

[1] Thiagarajan, Arvind. “TJHSST Class of 2009 Senior Destinations”
<http://www.kavitech.com/EduInfo/Destinations/Destinations.html>

[2] Chen, Jeff. “TJHSST Class of 2008 Senior Destinations”
<http://www.tjhsst.edu/jchen2/college>

[3] Wang, Jonathan and Zeng, Will. “TJHSST Class of 2007 Senior Destinations”
<http://www.tjhsst.edu/pwang/college/base.php>

[4] “Fairfax County School Board Votes to Change Grad-
ing Scale.” Fairfax County Public Schools, 1/23/2009.
<http://commweb.fcps.edu/newsreleases/newsrelease.cfm?newsid=1058>

[5] Chang, Lin “Applying Data Mining to Predict College Admissions Yield: A Case Study”
New Directions for Institutional Research, n131 p53-68 Fall 2006

[6] Sauer, Timothy “Numerical Analysis”, Addison Wesley, 2005, ISBN 03211268989

[7] Sedgewick, Robert and Wayne, Kevin, “GaussianElimination.java” 9/29/2009
<http://www.cs.princeton.edu/introcs/95linear/GaussianElimination.java.html>

8


