COMPUTER SYSTEMS RESEARCH 
Code Writeup 3rd Quarter 2009-2010
Name: Alex Stabile, Period: 4, Date: 4-6-10 
Project title or subject: Music Genre Classification 

Computer Language: Python 

Code:
1. #Nodes: [0] is value, [1] is error, [2] is id number 

2. from copy import deepcopy 

3. from random import random 

4. from math import e 

5. def sigmoid(t): 

6.     return 1.0/(1.0+(e**(-t))) 

7. def d_sigmoid(t): 

8.     return (t*(1-t)) 

9. def feedforward(i1, i2): 

10.     global network 

11.     global weights 

12.     network[0][0][0]=i1 

13.     network[0][1][0]=i2 

14.     for x in xrange(1, len(network)): 

15.         layer=network[x] 

16.         prev_layer=network[x-1] 

17.         for curnode in layer: 

18.             sumx=0.0 

19.             for prevnode in prev_layer: 

20.                 sumx=sumx+(prevnode[0]*weights[prevnode[2]][curnode[2]]) 

21.             curnode[0]=sigmoid(sumx) 

22.     #output node's value: 

23.     return network[2][0][0] 

24. def train(i1, i2): 

25.     if i1==i2: 

26.         return 0.0 

27.     return 1.0 

28. def error(): 

29.     error=abs(feedforward(0, 0)-train(0,0)) 

30.     error+=abs(feedforward(0, 1)-train(0,1)) 

31.     error+=abs(feedforward(1, 0)-train(1,0)) 

32.     error+=abs(feedforward(1, 1)-train(1,1)) 

33.     return error 

34. def learn(): 

35.     global network 

36.     global weights 

37.     d_weight=0.1 

38.     w_copy=deepcopy(weights) 

39.     for x in xrange(1, len(network)): 

40.         prev_layer=network[x-1] 

41.         layer=network[x] 

42.         for prev in prev_layer: 

43.             for cur in layer: 

44.                 old_weight=weights[prev[2]][cur[2]] 

45.                 old_error=error() 

46.                 weights[prev[2]][cur[2]]=old_weight+d_weight 

47.                 new_error=error() 

48.                 weights[prev[2]][cur[2]]=old_weight       

 #reset weight 

49.                 de_dw=(new_error-old_error)/d_weight 

50.                 w_copy[prev[2]][cur[2]]=old_weight-0.8*de_dw      #only change copy of weights 

51.     weights=w_copy 

52. def backprop(i1, i2): 

53. 
global network 

54. 
global weights 

55. 
errorx=0.5*(error()**2) 

56. 
out=feedforward(i1, i2) 

57. 
out_error=out*(1-out)*(train(i1, i2)-out) 

58. 
network[2][0][1]=out_error


#set error of output node 

59. 
order=list(xrange(1, len(network))) 

60. 
order.reverse() 

61. 
for x in order: 

62. 

prev_layer=network[x-1] 

63. 

layer=network[x] 

64. 

for prev in prev_layer: 

65. 


blame=0.0 

66. 


for cur in layer: 

67. 



blame=blame+(cur[1]*weights[prev[2]][cur[2]]) 

68. 


prev[1]=blame*d_sigmoid(prev[0]) 

69. 
for x in xrange(1, len(network)): 

70. 

layer=network[x] 

71. 

prev_layer=network[x-1] 

72. 

for node in layer: 

73. 


for prev_node in prev_layer: 

74. 



weights[prev_node[2]][node[2]] +=(0.8*node[1]*prev_node[0]*weights[prev_node[2]][node[2]]) 

75. network=[] 

76. network.append([[0,0,0],[0,0,1]])       #input layer 

77. network.append([[0,0,2],[0,0,3],[0,0,4]])   #hidden layer 

78. network.append([[0,0,5]])       #output layer 

79. #build weights 

80. weights=[] 

81. for x in range(0, len(network)-1): 

82.     layer=network[x] 

83.     next_layer=network[x+1] 

84.     for node in layer: 

85.         w=[] 

86.         nid=next_layer[0][2] 

87.         for z in xrange(0, nid): 

88.             w.append(-1) 

89.         for z in xrange(0, len(next_layer)): 

90.             w.append(random()) 

91.         weights.append(w) 

92. #weights built

            This code creates a simple, 3-layer neural network, initializes random weights, and has two possible learning methods to train the network: back-propagation, in the “backprop()” method,  and feed-forward, in the “learn()” method.  The purpose of this code is to have the network learn the “exlusive-or” problem.  This simple rule is a great way to construct and test a neural network that can then be applied to many other kinds of problems.  I am writing a more complicated network whose inputs will be the data obtained by my chord identification method, and whose output will indicate which genre the network believes a piece of music belongs in.  Due to the larger size of my goal network, I will need an effective back-propagation algorithm, because it is much faster than its feed-forward counterpart.
Testing:

            I’ve done extensive testing on different kinds of setups for neural networks.  So far, I have applied them all to the exclusive-or problem as a simple way of testing.  The code above is my simplest representation of a network so far.  I have written a feed-forward learning method, and after testing it many times with initially random weights and values I have determined that it produces extremely good results often, and borderline results occasionally.  By analyzing which initial weights yielded what kind of outputs, I am hoping to make my network more consistent.  My back-propagation algorithm is causing more trouble, but has been improving based on my analysis of results.  Fortunately, the exclusive-or problem is relatively simple, so both learning methods run quite fast.  This enables me to run thousands of learning iterations in seconds, which means my tests give me a very good idea of what my algorithms are doing.

