COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Bill Yu, Period: 4

2. Date of this version of your program: 4/2/10

3. Project title: Dynamic Complex Cretaceous Era Ecosystem Simulation

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

[image: image5.png]€ Applications Places System & Thu Apr 8, 2:57 PM ¢
€ [Eo]

BINGVS INEtIoGol/ats/csl st edu/students/2010/20 10wy DesKtop/NEtIo GO, DEE

Fle Edit Tools Zoom Tabs Help

Interface | information | Procedures

/7 8 + P <] ¥ viewupdates ;
it Delete add BEEAEeN<] L= | [seunes.]

continuous | v |
normal speed

[image: image2.png]

[image: image1.png]‘€ Avplications Places System @) (¢

Mon Mar 15, 11:28 AM o [

> DINOVS - NetLogo {/afs/csl.tjhsst.edu/students/2010/2010wyu/Backup/Desktop/NetLogo}

Fle Edit Tools Zoom Tabs Help

Interface | Information | Procedures

L |

Find

Procedures ~

o eat-sauropods
if pcolor = green
L
set pcolor vellow
set energy (energy + energy-fron-grass)
1
$3iTelse show-eneroy?
33[set Tabel energy]
130 set Tabel "t]

end

o eat-trexs
Tet ningist O
Tet d1 100
Tet @2 100
Tet found 0
Tet preyl noody
Tet prey2 noody
1T count sauropods > 1 [
set preyl min-one-of sauropods [distance myself]
set d1 distance preyl
set found 1]
IT count stegs > 1 [
Set prey2 min-one-of stegs [distance myself]
set 2 distance prey2
1
Tet prey preyl

set nindist fput dl mindist
set nindist fput 2 mindist

Set mindist sort mindist
Tet dist iten O mindist

Tet randl randon 100
Tet rand2 randon 100
Tet rand3 randon 100
i 02 = dist
L
if rand2 < 50
[set prey prey2]
1
if prey
L
if randt < 50
L
if distance prey < 5
L
ask prey [die]
33Set energy energy + energy-Tron-X
1
1
1
1et hoola is-sauranod? orev.

noboty.

33 eating for the herbivore is relatively simple, 1T there is grass there, it gets eaten

33 disabled show energy function

Name
&~
=0

® 0
A A
Snap to grid

Color that changes:

B ceen v

| cancel|

| Rotate Left |
| Rotate Right |

| Flip Horizontal |

| Flip Vertical |

BB

T3] [© [Mozila Firefox] I

Why am | 50 PRO?

| > DINOVS - NetLogo {/a

Why am | 50 PRO?

|[E codewrteup1s.odt - ... |

5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

[image: image3.png]» Applications Places System (k) () (B

Thu Oct 15, 3:40 PM @ P

Fle Edit Tools Zoom Tabs Help

Interface | information | Procedures

22

EEslider ~. m
slower

os
Game STRAT! a| Aad
] =]
Lets 06!

00 Show-energy?
]Oﬁ Show-energy’

Cgeezegurglerlun ez 192
-*
Energy-From-Cheeze 3

| S—

—
Init-Energy. 50

] lRegruw—Perc—Cgance 3

)

Edit Delete Add

Cheezeburger Turt...

/

o Population

Time 225

How Many Can Has Cheezeburger?
156

How Many Iz Cheezeburger?

&E

) view updates
Setings.
continuous | v

ticks: 21

I- # n

EER)

2174

Command Center

observer>|

= [NetLogo 4.0.4 User [Why am | 50 PRO?]

Logé.doc - OpenOffice... || Cheeze - NetLogo {/a

Why am | s0 PRO?

[image: image4.jpg]€ Avplications Places System 11:09 AM
DINOV3 " Netlogo! (/ars/cstjnsst edujstudents/2010/20 10wy /D esKtop/Netlogo T,
Fle Edit Tools Zoom Tab

Interface

o

/7 B8 +
et pelete gy BN <] | —Cp——

normal spee

 view updates

(@ WhyamisoPRo7 | £ *COMPUTER SvaTeMs.. | @ why am 50 RO

Turtles:

Velociraptor (Unused model)

T-Rex (Used predator)

Steg (Used defensible herbivore) -REPLACED WITH ANKYLOSAURUS

Aardonyx (Used herbivore) - REPLACED WITH GENERIC SAUROPOD

PredatorX (Random evolution, unused)

Generic Herbivore (Random food source, unused)

Sassafras (Immobile, unique producer)

Patches:

If patches are not green, they are not accessible for herbivores to feed off of.

Patch colors may be:

Yellow (moved on)

Blue (excess water)

Red / Orange / Black (burnt)

Brown (earthquake)

Methods (Each turtle dinosaur is 'asked' to:)

Eat-[Dinosaur] (Dinosaur's eating method, moving towards selecting closer prey if predator)

Move-[Dinosaur] (Dinosaur's moving method, contains turning and distance)

Reproduce-[Dinosaur] – ADDED ALGORITHM WITH EGGS AND TIME

Death (Dinosaurs die)

Regrow-grass (Grass is regrown)

Algorithms of note:

Algorithm for prey selection

Predation range algorithm allowing predators to prey on nearby food sources while not being directly on the same spot

Graphing algorithm (for modeling purposes) – Does not work by BehaviorSpace (putting the data into excel files, but can still put it on a graph and store data manually)

Algorithm for egg production

Various methods used in the various natural disasters

Algorithm for sassafras, how it behaves like a patch, but in fact is a turtle

The coding for the sassafras in unique in that it lasts much longer when consumed, allowing up to 100 set instances of consumption before it is deleted. - Reproduction for the sassafras was unfortunately overlooked, but will soon be added.

Current variables:

Viewable on pictures above

Response variables:

Population

Steps (time)

Errors:

Currently, the only existing error is that I can not get each egg to hatch into specifically different dinosaurs without adding an additional and cheap variable (which will likely happen). In order to do it using a general algorithm, I simply need to create uniquely colored eggs than have some sort of color boolean check if it is a certain color, and hatch it. Unfortunately, the boolean method in NetLogo can not be found.

What do you expect to work on next quarter, in relation to the goal of your project for the year?

 Inputs: Standard dinosaur inputs (a lot of the characteristics will already be hard-coded). The main inputs will be the initial population, and the reproduction rate (both of which have little information on).

Outputs: Populations, change in populations, change in change in population (respectively the derivative graphs). The overall trends and the irregular ecosystem combination results (all regarding to ending population). The output will be planned to go into an auto-stored excel for later research and reference.

Tests: Will vary since this is a purely hypothetical ecosystem - however basic ecosystem rules must apply. Accurate reproduction, consumption, foraging, daily actions must all be represented.

I hope to add maybe a few more chance algorithms such as completely making the time variable make sense with dinosaur growth. Other than that, I hope to completely move my program over to python in order to better capture data.

;; Comments followed by ;;

;;---Initialization---;;

breed [sauropods sauropod] ;; small sauropod

breed [trexs trex] ;; large predatory beast

breed [stegs steg] ;; medium-large armored herbivore (short for stegosaurus)

breed [sasses sass]

breed [eggs egg]

turtles-own [energy survival] ;; energy variable, survivability variable

eggs-own [create]

;;--------------------;;

;;---Setup---;;

to setup

 let time 0

 let init-eggs 0

 clear-all

 ask patches [set pcolor green] ;; grassy/vegetation-filled environment

 set-default-shape eggs "egg"

 create-eggs init-eggs

 [

 set color grey

 set size 0.5

 set energy 100

]

 set-default-shape sasses "sassafras"

 create-sasses init-sassafras

 [

 set color lime

 set size 4.0

 set energy 100

 let r1 random-xcor

 let r2 random-ycor

 setxy r1 r2

]

 set-default-shape sauropods "aardonyx" ;; sets the custom turtle shape

 create-sauropods init-sauropods ;; aadrdonyx creation

 [

 set color grey ;; sets variable color (repeats for all existing species)

 set size 4.0 ;; sets picture-size ratio (repeats for all existing species)

 set energy 1 + random init-sauropod-energy ;; initial energy (repeats for all existing species)

 setxy random-xcor random-ycor

]

 set-default-shape trexs "trex" ;; trex creation

 create-trexs init-trexs

 [

 set color red

 set size 5.0

 set energy 1 + random init-trex-energy

 setxy random-xcor random-ycor

]

 set-default-shape stegs "steg" ;; stegosaurus creation

 create-stegs init-stegs

 [

 set color yellow

 set size 5.0

 set energy 1 + random init-steg-energy

 setxy random-xcor random-ycor

]

 ;;update-plot ;; disabled modeling function

end

;;-----------;;

;;---Start---;;

to go ;; the main step method

 tick

 if not any? turtles [stop]

 regrow-grass ;; step regrowing grass

 if MinorDrought

 [

 ask patches [

 if random 100 < 7 [set pcolor yellow]]

 ask sasses [

 if random 100 < 10 [die]

]

]

 if MajorDrought [

 ask patches [

 if random 100 < 25 [set pcolor yellow]]

 ask sasses [

 if random 100 < 25 [die]

]

]

 if MinorFlood

 [

 ask patches [

 set pcolor green

 if random 100 < 5 [set pcolor blue]]

]

 if MajorFlood

 [

 ask patches [

 set pcolor yellow

 if random 100 < 15 [set pcolor blue]]

 ask sasses [

 if random 100 < 15 [die]

]

]

 if Earthquake

 [

 ask patches [

 if random 100 < 1[set pcolor brown]]

 ask sauropods

 [if random 100 < 25 [die]]

 ask trexs

 [if random 100 < 30 [die]]

 ask stegs

 [if random 100 < 35 [die]]

 ask sasses [

 if random 100 < 5 [die]

]

]

 if GlobalVolcanic

 [

 ;;loop [

 ;ask patch-at random-pxcor random-pycor

 ;[

 ;set pcolor red

 ;ask neighbors [set pcolor red

 ;ask neighbors [set pcolor red

 ;ask neighbors [set pcolor red

 ;ask neighbors [set pcolor red

 ;ask neighbors [set pcolor orange

 ;ask neighbors [set pcolor orange

 ;ask neighbors [set pcolor orange

 ;ask neighbors [set pcolor orange

 ;ask neighbors [set pcolor black

 ;ask neighbors [set pcolor black

 ;ask neighbors [set pcolor black]]]]]]]]]]]

 ;]

 ;;]

 clear-all

 ask patches [set pcolor red]

 ask patches [

 if random 100 < 25[set pcolor orange]]

 ask patches [

 if random 100 < 25[set pcolor brown]]

 ask patches [

 if random 100 < 25[set pcolor black]]

]

 ask sauropods ;; each ask method makes the species, move, reduce energy,

 [

 move-sauropods ;; eat if possible, reproduce if possible, and check for death

 set energy energy - 2 ;; movement energy

 eat-sauropods

 reproduce-sauropods

 death

]

 ask trexs

 [

 move-trexs

 set energy energy - 4

 eat-trexs

 reproduce-trexs

 death

]

 ask stegs

 [

 move-stegs

 set energy energy - 3

 eat-stegs

 reproduce-stegs

 death

]

 ;ask eggs

 ; [

 ; if pcolor yellow

 ; [

 ; hatch-trexs 1 [rt random-float 360 fd 1 set color red set size 5.0 set create ticks]

 ;]

 ; if pcolor white

 ; [

 ; hatch-sauropods 1 [rt random-float 360 fd 1 set color grey set size 4.0 set create ticks]

 ;]

 ; if pcolor grey

 ; [

 ; hatch-stegs 1 [rt random-float 360 fd 1 set color yellow set size 5.0 set create ticks]

 ;]

 ;]

end

;;-----------;;

;;---Methods---;;

to move-stegs ;; fd is distance rt and lt are angle variablitiy

 rt random 40

 lt random 40 ;; (therefore this is agility and speed)

 let randms random 4

 fd randms / 2 ;; 1/4 chance to move 2, otherwise move 1

end

to move-sauropods

 rt random 30

 lt random 30

 let randms random 4

 fd randms / 2 ;; 1/4 chance to move 2, otherwise move 1

end

to move-trexs

 rt random 50

 lt random 50

 let randms random 3

 fd randms ;; equal chance to move 1, 2 ,3

end

to reproduce-stegs ;; reproduction requires a population of at least 2,

if count stegs > 2 ;; the reproduction rate in scale by a factor of 10

[

if random-float 100 < steg-reprate / 20 ;; further scale by factor of two for female species

 [

 set energy (energy / 2)

 ;;hatch 1 [rt random-float 360 fd 1]

 ;;ask eggs [hatch 1 [rt random-float 360 fd 1]]

 hatch-eggs 1 [rt random-float 360 fd 1 set color grey set size 2.0 set create ticks]

]

]

end

to reproduce-sauropods

if count sauropods > 2

[

 if random-float 100 < sauropod-reprate / 20 ;; sauropod reproduction (identical)

 [

 set energy (energy / 2)

 ;;hatch 1 [rt random-float 360 fd 1]

 hatch-eggs 1 [rt random-float 360 fd 1 set color white set size 1.0 set create ticks]

]

]

end

to reproduce-trexs

 if count trexs > 2

 [

 if random-float 100 < trex-reprate / 20 ;; trex reproduction (identical)

 [

 set energy (energy / 2)

 ;;hatch 1 [rt random-float 360 fd 1]

 hatch-eggs 1 [rt random-float 360 fd 1 set color yellow set size 2.5 set create ticks]

]

]

end

to eat-stegs ;; 100% chance of grass consumption

 if pcolor = green

 [

 set pcolor yellow ;; black represents eaten grass, green represents existing grass

 set energy (energy + energy-from-grass)

]

end

to eat-sauropods ;; eating for the herbivore is relatively simple, if there is grass there, it gets eaten

 let eaten 0

 if count sasses-here > 0

 [

 let xfer random energy-from-grass

 set energy (energy + eaten)

 set eaten 1

 ask one-of sasses-here [

 set energy energy - xfer

 death]

]

 if pcolor = green

 [

 set pcolor yellow

 set energy (energy + energy-from-grass)

]

 ;;ifelse show-energy? ;; disabled show energy function

 ;;[set label energy]

 ;;[set label ""]

end

to eat-trexs ;; predators requires more of a prey selection of minimum distance,

 let mindist []

 let d1 100

 let d2 100

 let found 0

 let prey1 nobody

 let prey2 nobody

 if count sauropods > 1 [

 set prey1 min-one-of sauropods [distance myself]

 set d1 distance prey1

 set found 1] ;; in addition to a predation range algorithm that chooses one within its range

 if count stegs > 1 [

 set prey2 min-one-of stegs [distance myself]

 set d2 distance prey2

] ;; allows for multiple species of prey

 let prey prey1 ;; prey are assorted in ascending strengths

 ;; ascending strengths allow easier first prey

 set mindist fput d1 mindist ;; distance variable integer

 set mindist fput d2 mindist ;; stores distances, then sorts in ascending order

 ;; array is good for more future prey

 set mindist sort mindist

 let dist item 0 mindist ;; first item, lowest distance

 ;; arbitrary prey, weakest first, otherwise

 let rand1 random 100 ;; chance of predation determiner

 let rand2 random 100 ;; chance of going after smaller dist

 let rand3 random 100 ;; chance of fight

 if d2 = dist ;; checking if d2 is the closer

 [

 if rand2 < 50 ;; 50% chance of going for closer, harder prey

 [set prey prey2]

]

 if prey != nobody

 [

 if rand1 < 50 ;; 50% chance of trex predation

 [

 if distance prey < 5 ;; predation range

 [

 ask prey [die]

 ;;set energy energy + energy-from-X ;; energy gain

]

]

]

 let boola is-sauropod? prey

 let boolb is-steg? prey

 if boola [

 set energy energy-from-sauropods] ;; no fight, helpless prey

 if boolb [

 set energy energy-from-stegs ;; if below threshold, trex gets hurt, energy reduced

 if rand3 < 15 ;; 15 percent chance of fight back

 [

 set energy energy - 20

 ;;set effect maimed

]

]

end

to death ;; death algorithm

 if energy < 0 [die]

end

to regrow-grass

 ask patches [

 if random 100 < Regrow-Perc-Chance [set pcolor green]

]

end

;;---;;

