COMPUTER SYSTEMS RESEARCH

4th Quarter Version
Code Writeup of your program, 2009-2010

1. Your name: Peter Ballen Period:5

2. Date of this version of your program: 3/24/2010

3. Project title: Exploring the Use of Fuzzy Constraint Satisfaction Problems to Evaluate the Happiness of Society.

Much of this quarter's code has been focused on adding interactivity to the model. New stuff from this quarter is in bold.

For more about the testing/analysis, look at the project experiment 1 and 2.

statetaxunemploymentbenefits.tzt:

The source of the data used by the code. I gathered the data from various .gov websites. It includes state, electoral votes, tax, and unemployment information, formatted as follows.

[image: image1.png]State
ALABAMA
ALASKA
ARIZONA
ARKANSAS

Votes

Unemployment Income Tax Rate

6.1
73
63
57

45

5
0
7
7

Population = [] //Population is an array of Voters;

Priority = [] //Priority of each Voter in Population. The size of Population must equal the size of Priority or the code will throw an error. Population and Priority should align up, the Voter in index 3 of Population should have a priority stored in the Priority array index 3.

StateHighlight = [] //A list of states that are to be highlighted. Can be edited during runtime by user.

OptimalWeighted = [] //The optimal weighted solution. Global to allow different methods to access it simultaneously (either to calculate it, draw it, or evaluate it).

OptimalUnweighted=[] //Same as above, but with unweighted solution instead of weighted.

EvalFunc = "" //The current evaluation function being used. The three accepted options are linear distance, exponential distance, and piecewise. See Experiment 2 for more details.

findmouse = False //Should the code be taking mouse input? Can be edited by user at runtime.

canvas = None //Rather than pass the Canvas around, I made it global.

root = None // Rather than pass the Root around, I made it global.

class Voter:

def __init__(self, myOp): //Initializing the Voter required giving it an array of two values, the first corresponding to the issue that will populate the x-axis, the second the y=axis. If myOp is given None, an array will be populated with random floats between 0 and 1. myOp is then saved as myOpnions,

def rate_full(self, proposed): //Proposed is an array of two floats, similar to myOp. Finds a float based on 1 - (distance between myOpinions and proposed). Returns that float.

def rate_partial(self, proposed, index) //Similar to rate_full, but looks only at the given index and completely ignores all other indexes in proposed.

def settag(self, tag) //Voters can be given tags, which allow the Voters to be easily identified at a later time.

def drawpoint(self, canvas, priority): //Draws the Voter onto the canvas as a dot at a location determined by myOpinions. The size of the dot is contingent on the passed priority, a larger priority will result in a larger dot. States listed in Statehighlight will be drawn as bright yellow dots (highlighted).

def fixfunc(val) //Given the distance, the code will apply the appropriate evaluation function and return the true happiness value. The three accepted values are linear distance (return val), exponential (return e^val) or piecewise (round val to the nearest .1). If the code finds an evaluation function is doesn't recognize, it will give an error message and resort to using linear distance.

def fixPriorities() //For the rest of the code to function properly, the list of Priorities must sum to one. However, it is manually easier to enter whole integers. This method will scale the priorities accordingly so that the priorities will sum to one.

def societyrate_full(proposed): //Finds and returns average satisfaction of all Voters in Population. Should be used to evaluate a final proposal or when using brute force.

def societyrate_partial(proposed, index) //Finds and returns average satisfaction of all Voters in Population looking only at the passed index and ignoring the rest. Useful while pruning.

def drawpointoncanvas(canvas, color, i1, i2): //Converts the point (i1, i2) with range [0,1] to an (x,y) value with range [0, 500] and draws that point on canvas with the given color. Uses TKinter. Currently only being used to draw final results, as the individual voters are drawn with the drawpoint method.

def prunesimulation()
//This is the current faster method that uses pruning. Uses the 3rd quarter version to identify the optimal solution.

 //The prunesimulation does not display anything on the board. That is handled in main.

//The optimal weighted and unweighted values are stored in OptimalWeighted and

OptimalWeighted, global commands.

def loadcanvas(): //Redraw the canvas. The voters are drawn (as by drawpoint), the optimal weighted and the optimal solutions are drawn (values taken from OptimalWeighted / OptimalUnweighted). The axis are labeled "Income Tax Rate" and "Unemployment Rate" and the current evaluation function is written onto the graph.

def callback(event): //Triggers when the user clicks on the screen and findmouse = True. This method will highlight the dot closest to whereever the user clicked and print out the state that dot represents.

def exitall(): //When the user closes the canvas (clicks the x button in the top right corner), terminate the code.

def main():

//Initialize all variables and the canvas. Uses the 3rd quarter version to read tin the state data.

//Opens up the user interface. The code will recognize any of the following commands and react accordingly. All commands are capitalization insensitive (hIghLigHT NEW York = highlight new york)

· highlight [state] - highlights the entered state

· unhighlight [state] - unhighlight a previously highlighted state

· unhighlight all - unhighlights all states.

· identify [weighted/unweighted] solution - will give the x and y value of the requested solution.

· identify [state] - give the x and y value of the requested state.

· eval [distance/piecewise/exponential] - switch to using the entered evalaution function.

· poll [state] - print out how satisfied a given state is with the current weighted and unweighted solutions.

· mouse on - accept mouse input (click near a dot to highlight and identify that dot)

· mouse off - turn off mouse input

· exit/quit - terminate the program

· "" (empty string) - ignored and asks for further input.

from random import *

from math import *

from Tkinter import *

from time import *

NumCategories = 2

NumVoters = 50

Population = []

Priorities = []

accuracy = .01

StateHighlight = []

OptimalWeighted = [0,0]

OptimalUnweighted = [0,0]

EvalFunc = "distance"

findmouse = False

root = None

canvas = None

class Voter:

 def __init__(self, myOp):

 if myOp != None:

 self.myOpinions = myOp

 else:

 rawop = []

 for k in range(0, NumCategories):

 r = random()

 rawop.append(r)

 self.myOpinions = rawop

 def setTag(self, tag):

 self.myTag = tag

 def rate_partial(self, proposed, index):

 total = 0

 op = self.myOpinions[index]

 prop = proposed[index]

 total = pow(op-prop, 2)

 #total = sqrt(total)

 total = 1 - total

 total = fixfunc(total)

 return total

 def rate_full(self, proposed):

 total = 0

 for k in range(0, NumCategories):

 op = self.myOpinions[k]

 prop = proposed[k]

 total += pow(op-prop, 2)

 total = total / NumCategories

 total = 1 - total

 total = fixfunc(total)

 return total

 def drawpoint(self, canvas, p):

 #drawpointoncanvas(canvas, 'black', self.myOpinions[0], self.myOpinions[1])

 x = 100 + self.myOpinions[0] * 800

 y = 900 - self.myOpinions[1] * 800

 if x < 103:

 x = 105

 if x > 897:

 x = 895

 if y < 103:

 y = 105

 if y > 897:

 y = 895

 #r = sqrt(50*p/3.141592857) too small for this example

 r = sqrt(300*p/3.141592857)

 if(self.myTag in StateHighlight):

 canvas.create_oval(x-3,y-3,x+3,y+3,fill='yellow')

 else:

 canvas.create_oval(x-r,y-r,x+r,y+r,fill='black')

def fixfunc (val):

 global EvalFunc

 if EvalFunc == "distance":

 return val

 if EvalFunc == "piecewise":

 if val > .9:

 return 1.0

 if val > .8:

 return .9

 if val > .7:

 return .8

 if val > .6:

 return .7

 if val > .5:

 return .6

 if val > .4:

 return .5

 if val > .3:

 return .4

 if val > .2:

 return .3

 if val > .1:

 return .2

 else:

 return .1

 if EvalFunc == "exponential":

 e = 2.71828

 return pow(e, val) / e

 else:

 print "Current evaluation function invalid. Resorting to distance."

 EvalFunc = "distance"

 return val

def fixPriorities():

 global Priorities

 total = 0.0

 for k in Priorities:

 total += k

 index = 0

 for k in Priorities:

 Priorities[index] = Priorities[index] / total

 index += 1

def societyrate_partial(proposed, index, usepriorities):

 global Priorities

rating = 0.0

for k in range(0, NumVoters):

 if usepriorities == True:

 rating += Population[k].rate_partial(proposed, index) * Priorities[k]

 else:

 rating += Population[k].rate_partial(proposed, index)

 rating = sqrt(rating)

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def societyrate_full(proposed, usepriorities):

 global Priorities

rating = 0.0

for k in range(0, NumVoters):

 if usepriorities == True:

 rating += Population[k].rate_full(proposed) * Priorities[k]

 else:

 rating += Population[k].rate_full(proposed)

rating = rating / NumVoters

if rating > 1:

 rating = 1

if rating < 0:

 rating = 0

return rating

def drawpointoncanvas(color, i1, i2):

 x = 100 + i1 * 800

 y = 900 - i2 * 800

 if x < 103:

 x = 105

 if x > 897:

 x = 895

 if y < 103:

 y = 105

 if y > 897:

 y = 895

 canvas.create_oval(x-2,y-2,x+2,y+2,fill=color,outline=color)

 return x,y

def prunesimulation(usepriorities):

 starttime = time()

 maxrate = 0

 maxvalues = [0,0]

 i1 = 0.0

 while i1 < 1:

 rating = societyrate_partial([i1, .5], 0, usepriorities)

 if rating > maxrate:

 maxrate = rating

 maxvalues[0] = i1

 i1 += accuracy

 i1 = maxvalues[0]

 maxrate = 0

 i2 = 0.0

 while i2 < 1:

 rating = societyrate_full([i1, i2], usepriorities)

 if rating > maxrate:

 maxrate = rating

 maxvalues[1] = i2

 i2 += accuracy

 return maxvalues

def loadcanvas():

 global OptimalWeighted, OptimalUnweighted

 canvas.delete(ALL)

 fixPriorities()

 canvas.create_rectangle(100, 100, 900, 900,fill='grey', outline='grey')

 for k in range(0, NumVoters):

 Population[k].drawpoint(canvas, Priorities[k])

 mp1, mp2 = prunesimulation(True) #weighted

 OptimalWeighted = [mp1, mp2]

 m1, m2 = prunesimulation(False) #unweighted

 OptimalUnweighted = [m1, m2]

 drawpointoncanvas('red',mp1, mp2) #weighted = red = house

 drawpointoncanvas('blue', m1, m2) #unweighted = blue = senate

 output = "Eval Func: " + EvalFunc

 canvas.create_text(500, 50, text=output, font=('verdana', 20))

 canvas.create_text(150, 925, text="Low", font=('verdana', 15))

 canvas.create_text(850, 925, text="High", font=('verdana', 15))

 canvas.create_text(450, 925, text="Income Tax Rate", font=('verdana', 15))

 canvas.create_text(50, 150, text="High", font=('verdana', 15))

 canvas.create_text(50, 850, text="Low", font=('verdana', 15))

 canvas.create_text(50, 500, text="Unempl\noyment", font=('verdana', 15))

def callback(event):

 global findmouse

 if findmouse == True:

 x = (event.x-100.0)/800

 y = (event.y-900.0)/(-800)

 happiest = Population[0]

 for Voter in Population:

 if Voter.rate_full([x,y]) > happiest.rate_full([x,y]):

 happiest = Voter

 if happiest.myTag not in StateHighlight:

 StateHighlight.append(happiest.myTag)

 loadcanvas()

 print "You clicked near ", happiest.myTag

 print "Input/ "

def exitall():

 print "\nThank you and have a nice day."

 exit(0)

def main():

 global Priorities, Population, canvas, StateHighlight, EvalFunc, findmouse

 global root, canvas

 root = Tk()

 canvas=Canvas(root,width=1000,height=1000,bg='white')

 canvas.pack()

 canvas.bind("<Button-1>", callback)

 root.protocol("WM_DELETE_WINDOW", exitall)

 size=0

 wordfile = open('statetaxunemployment.txt').read().split('\n') #split the file into an array of lines

 for line in wordfile:

 parsestring = line.split('\t') #then split the file into the stuff before the comma and after

 state = parsestring[0].lower()

 priority = float(parsestring[1])-2

 Sunemployment = parsestring[2]

 Staxrate = parsestring[3]

 #unemployment = (float(Sunemployment)-3)/7.0

 unemployment = float(Sunemployment)/10.0

 taxrate = float(Staxrate)/10.0

 #print state, priority, unemployment, taxrate

 V = Voter([taxrate,unemployment])

 V.myTag = state

 Population.append(V)

 Priorities.append(float(priority))

 size += 1

 loadcanvas()

 incoming = "Hi - This is an empty command. The cake is a lie."

 while (incoming != "exit" and incoming != "quit" and incoming != ""):

 parsein = incoming.split(' ', 1)

 if parsein[0] == "highlight":

 if parsein[1] not in StateHighlight:

 StateHighlight.append(parsein[1])

 if parsein[0] == "unhighlight":

 if parsein[1] == "all":

 StateHighlight = []

 if parsein[1] in StateHighlight:

 StateHighlight.remove(parsein[1])

 if parsein[0] == "identify":

 if parsein[1] == "unweighted solution":

 print "x value =", OptimalUnweighted[0], "\ty value = ", OptimalUnweighted[1]

 if parsein[1] == "weighted solution":

 print "x value =", OptimalWeighted[0], "\ty value = ", OptimalWeighted[1]

 else:

 for V in Population:

 if V.myTag == parsein[1]:

 print "x value =", V.myOpinions[0], "\ty value = ", V.myOpinions[1]

 if parsein[0] == "eval":

 EvalFunc = parsein[1]

 if parsein[0] == "poll":

 for V in Population:

 if V.myTag == parsein[1]:

print "weighted satisfaction =", V.rate_full(OptimalWeighted), "\tunweighted satisfaction = ", V.rate_full(OptimalUnweighted)

 if parsein[0] == "mouse":

 if parsein[1] == "on":

 findmouse = True

 if parsein[1] == "off":

 findmouse = False

 loadcanvas()

 incoming = raw_input("Input/ ").lower()

if __name__ == '__main__':

main()

