
Applications of Artificial Intelligence and Machine
Learning in Othello

Jack Chen

tjhsst Computer Systems Lab 2009–2010

Abstract

This project explores Artificial Intelligence techniques in the board game Othello.
Several Othello-playing programs were implemented and compared. The performance
of minimax search algorithms, including alpha-beta, NegaScout and MTD(f), and of
other search improvements such as transposition tables, was analyzed. In addition, the
use of machine learning to enable AI players to improve play automatically through
training was investigated.

1 Introduction

Othello (also known as Reversi) is a two-player board game and abstract strategy game, like
chess and checkers. I chose to work with Othello because it is sufficiently complex to allow
significant exploration of advanced AI techniques, but has a simple set of rules compared to
more complex games like chess. It has a moderate branching factor, larger than checkers and
smaller than chess, for example, which makes advanced search techniques important without
requiring a great deal of computational power for strong play. Although my AI programs
are implemented to play Othello, most of the algorithms, data structures, and techniques
I have investigated are designed for abstract strategy games in general instead of Othello
specifically, and many machine learning algorithms are widely applicable to problems other
than games.

2 Background

The basic goal of an AI player is to consider the possible moves from the current game
state, evaluate the position resulting from each move, and choose the one that appears best.
One major component of an AI player is the static evaluation function, which heuristically
estimates the value of a position without exploring moves. This value indicates which player
has the advantage and how large that advantage is. A second major component is the search
algorithm, which more accurately evaluates a state by looking ahead at potential moves.

1



3 Static Evaluation

3.1 Features

For positions at the end of a game, the static evaluation is based solely on the number of
pieces each player has, but for earlier positions, other positional features must be considered.
The primary goals before the end of the game are mobility, stability, and parity. The major
features used in my static evaluation function reflect these three goals. The overall evaluation
is a linear combination of the features, that is, it is a weighted sum of the feature values.
Features that are good have positive weights, while features that are bad have negative
weights, and the magnitude of a feature’s weight reflects its importance.

• Mobility

Mobility is a measure of the number of moves available to each player, both at the
current position and in the future (potential mobility). Mobility is important because
a player with low mobility is more likely to be forced to make a bad move, such as
giving up a corner. The goal is to maximize one’s own mobility and minimize the
opponent’s mobility.

– Moves

The number of moves each player can make is a measure of current mobility.
The moves differential, the number of moves available to the player minus the
number of moves available to the opponent, is one of the features used in my
static evaluation function. Positions with higher moves differential are better for
that player, so this feature has a positive weight.

– Frontier squares

Frontier squares are empty squares adjacent to a player’s pieces. The number
of frontier squares is a measure of potential mobility, because the more frontier
squares a player has, the more moves the opponent can potentially make. Having
fewer frontier squares than the opponent is good, so the frontier squares differential
is weighted negatively.

• Stability

Pieces that are impossible to flip are called stable. These pieces are useful because
they contribute directly to the final score.

– Corners

Corners are extremely valuable because corner pieces are immediately stable and
can make adjacent pieces stable. They have the largest positive weights of all the
features I use.

2



– X-squares

X-squares are the squares diagonally adjacent to corners. X-squares are highly
undesirable when the adjacent corner is unoccupied because they make the corner
vulnerable to being taken by the opponent, so they have very negative weight.

– C-squares

C-squares are the squares adjacent to corners and on an edge. C-squares adjacent
to an unoccupied corner are somewhat undesirable, like X-squares, but they are
much less dangerous. In addition, C-squares can contribute to edge stability,
which makes them desirable in some cases. Generally, C-squares are weighted
fairly negatively, but to a much smaller extent than X-squares.

• Parity

Global parity is the strategic concept that the last player to move in the game has a
slight advantage because all of the pieces gained become stable. White therefore has
an advantage over black, as long as the parity is not reversed by passes. In addition,
in the endgame, empty squares tend to separate into disjoint regions. Local parity is
based on the idea that the last player to move in each region has an advantage because
the pieces that player gains are often stable. I use global parity as a feature, but do
not consider local parity.

3.2 Game Stages

The importance of the features used in the static evaluation function depends on the stage
of the game. For example, one common strategy is to minimize the number of pieces one
has early in the game, as this tends to improve mobility, even though this is contrary to the
ultimate goal of the game. It is useful, then, to have different feature weights for different
game stages. In Othello, the total number of pieces on the board is a good measure of the
game stage.

4 Search Algorithms and Data Structures

Static evaluation is often inaccurate. For example, it is difficult to detect traps statically.
When evaluating a position, it is therefore important to consider possible moves, the possible
moves in response to each of those moves, and so on. This forms a game tree of the possible
sequences of moves from the initial game state.

4.1 Minimax

The minimax search algorithm is the basic algorithm to do this exploration of the game
tree. Minimax recursively evaluates a position by taking the best of the values for each child
position. The best value is the maximum for one player and the minimum for the other
player, because positions that are good for one player are bad for the other.

3



The number of nodes searched grows exponentially with search depth, which is measured
in ply (one ply is a move by one player). The rate of growth is the branching factor, which
is the average number of children of each node, or the average number of moves from each
position. In Othello, the branching factor averages about 10, although it tends to be higher
in the midgame and lower in the endgame. Because of this extremely large growth rate,
searching the entire game tree down to the end of the game is not practical. Therefore,
minimax search can only look a limited number of moves ahead. The terminal positions at
the end of this lookahead are evaluated with the static evaluation function.

Figure 1 shows a minimax search on an example game tree. Player 1 is the minimizing
player and player 2 is the maximizing player. The letters represent game states, and the
numbers next to each node represent its evaluation. The search has depth 3, and the values
of the leaf nodes represent values from a static evaluation function.

Figure 1: An example minimax search

Figure 2 shows the performance of minimax search at various seach depths. The plots
show the average time required per game (in seconds) when using a minimax search of fixed
depth to play several randomized games, on linear and logarithmic scales. The time grows
exponentially with a base of about 10, which matches the average branching factor.

0

2000

4000

6000

8000

2 3 4 5 6 7 8

Ti
m

e

Search Depth

(a) Linear scale

0.001

0.1

10

1000

2 3 4 5 6 7 8

Ti
m

e

Search Depth

(b) Semilogarithmic scale

Figure 2: Time required for minimax search vs. search depth

4



4.2 Alpha-Beta Pruning

There are many minimax algorithms that are much faster than naive minimax. Alpha-beta
pruning is an extremely important improvement on which several others depend. Alpha-beta
search greatly reduces the number of nodes in the game tree that must be searched. This
search algorithm maintains two values, alpha and beta, that represent the window between
the best values the players can be assured of from the search so far. If the algorithm finds
a bound for a node’s value that is outside the alpha-beta window, then the node and its
subtree can be safely pruned because the node’s value cannot affect the value of the root.

Figure 3 shows an alpha-beta search on the same game tree shown in Figure 1. Nodes
L and G, along with their subtrees, are pruned, significantly reducing the computation time
spent searching this game tree.

Figure 3: An example alpha-beta search

In the best case, if moves are searched in order from best to worst, then the effective
branching factor of alpha-beta search is reduced to the square root of naive minimax’s
branching factor, meaning a search twice as deep is possible with about the same computation
time. Of course, the correct ordering of the moves is not known, or a search would be
unnecessary. However, even with random move ordering, alpha-beta pruning dramatically
reduces the number of nodes searched. There are many methods that can be used to improve
move ordering, such as previous estimates from shallower searches in iterative deepening,
killer moves, and history heuristics.

Figure 4 compares the performance of alpha-beta and minimax at various seach depths.
For alpha-beta, the time grows exponentially with a base of about 5, which is a huge im-
provement over minimax’s branching factor of approximately 10.

4.3 Transposition Table

Move sequences that result in the same position are called transpositions. For example, the
two opening move sequences shown in Figure 5 result in the same position.

An important way to improve search speed is to cache information about positions that
have already been searched in a data structure called a transposition table. Transpositions
could cause a program to repeatedly analyze the same position. Storing previous results in

5



0

10

20

30

40

2 3 4 5 6 7 8 9

Ti
m

e

Search Depth

Minimax Alpha-Beta

(a) Linear scale

0.001

0.1

10

1000

2 3 4 5 6 7 8

Ti
m

e

Search Depth

Minimax Alpha-Beta

(b) Semilogarithmic scale

Figure 4: Comparison of time required for alpha-beta and minimax search vs. search depth

Figure 5: An example transposition

6



a transposition table allows the program to avoid this problem. In addition, a transposition
table can be used to improve move ordering by storing the best move found for each position
and searching this move first. This is especially useful with iterative deepening, as the best
moves found in shallow searches often remain good moves for deeper searches. I found that
this improved move ordering is a much more important use of the transposition table in
terms of increasing search speed.

The transposition table is implemented as a hash table to allow efficient access. One
useful method for hashing positions in games like Othello and Chess is Zobrist hashing [12].
A Zobrist hash consists of an XOR sum of several bitstrings. For each square on the board,
there is one randomly generated bitstring representing a black piece and another representing
a white piece. A position’s Zobrist hash is formed by XORing together the appropriate
bitstrings. The primary benefit of Zobrist hashing is that it can be incrementally updated
very quickly by XORing it with the bitstrings for the pieces that have changed. Zobrist
hashes also have the advantage of uniform distribution.

Alpha-beta search may not yield an exact value if the true value lies outside the alpha-
beta window. Instead, the search may yield only an upper or lower bound. However, this
limited information is still useful in later searches, as it can reduce the alpha-beta window
size or result in cutoffs.

For each position in the transposition table, the following information is stored:

• The hash key or another hash of the position, which is used to detect collisions. This
takes less memory than storing the entire board, although there is a possibility that two
different positions will have the same hashes. Such a collision would cause inaccurate
information to be used. However, with a sufficiently long hash key, such as the 64-bit
hash keys I use, the probability of a collision is extremely small and is outweighed by
the time and memory savings.

• Information about the position’s value from previous searches, including an exact value,
an upper bound, or a lower bound.

• The best move found so far.

• The depth of the search this information is from. If the depth is less than the depth
of the current search, the evaluation information should not be used, but the move
information can still be used to improve move ordering.

Figure 6 shows the performance of alpha-beta search with and without a transposition
table for memoization and for move ordering. Based on these results, search with memory
is an average of 1.5 to 2 times as fast.

4.4 NegaScout

NegaScout [11] (which is similar to Principal Variation Search [9]) is an enhancement of
alpha-beta search that can reduce the number of nodes that must be searched. NegaScout

7



0

50

100

150

4 5 6 7 8 9 10

Ti
m

e

Search Depth

Without Memory With Memory

(a)

40%

50%

60%

70%

80%

90%

4 5 6 7 8 9 10

R
e

la
ti

ve
 T

im
e

Search Depth

(b) Time for alpha-beta with memory relative to
alpha-beta without memory

Figure 6: Comparison of time required for alpha-beta search with and without a transposition
table vs. search depth

searches the first move for a node with a normal alpha-beta window. It then assumes that
the next moves are worse, which is often true with good move ordering. For the remaining
moves, it uses a null-window search, in which the alpha-beta window has zero width, to
test whether this is true. The value must lie outside the null-window, so the null-window
search must fail. However, this yields a lower or upper bound on the value if the null-window
search fails high or low, respectively. If it fails low, then the test successfully shows that the
move is worse than the current alpha and therefore does not need to be further considered.
Otherwise, the test shows that the move is better than the current alpha, so it must be
re-searched with a full window.

Null-window searches are faster because they produce many more cutoffs. However, even
though NegaScout never explores nodes that alpha-beta prunes, NegaScout may be slower
because it may need to re-search nodes several times when null-window searches fail high.
If move ordering is good, NegaScout searches faster than alpha-beta pruning, but if move
ordering is poor, NegaScout can be slower. See Section 4.6 for analysis of the performance
of NegaScout.

A transposition table is even more beneficial to NegaScout than to alpha-beta because
stored information can be used during re-searches, for example, to prevent re-evaluation of
leaf nodes.

4.5 MTD(f)

MTD(f) [10] is another search algorithm that is more efficient than alpha-beta and outper-
forms NegaScout. It is efficient because it uses only null-window searches, which result in
many more cutoffs than wide window alpha-beta searches. Each null-window search yields
a bound on the minimax value, so MTD(f) uses repeated null-window searches to converge

8



on the exact minimax value. Because many nodes need to be re-evaluated several times, a
transposition table is crucial for MTD(f) to prevent excessive re-searches.

MTD(f) starts its search at a given value, f. The speed of MTD(f) depends heavily on
how close this first guess is to the actual value, as the closer it is the fewer null-window
searches are necessary. It is therefore useful to use iterative deepening on MTD(f), using the
value of the previous iteration as the first guess for the next iteration.

While MTD(f) is theoretically more efficient than alpha-beta and NegaScout, it has some
practical issues, such as heavy reliance on the transposition table and search instability. The
performance of MTD(f) is discussed in Section 4.6.

4.6 Performance Analysis

Figure 7 compares the performance of NegaScout, MTD(f), and alpha-beta search. All
of these searches are done with a transposition table. Different searches were done with
transposition table sizes of 220, 222, or 224 positions, and the plotted time is the minimum
of these times. These results indicate that NegaScout is ineffective at small depths, but is
significantly faster than alpha-beta on deeper searches. MTD(f) is faster than both alpha-
beta and NegaScout overall.

0

20

40

60

80

4 5 6 7 8 9 10

Ti
m

e

Search Depth

Alpha-Beta NegaScout MTD-f

(a)

40%

60%

80%

100%

120%

4 5 6 7 8 9 10

R
e

la
ti

ve
 T

im
e

Search Depth

NegaScout MTD-f

(b) Time for NegaScout and MTD(f) relative to alpha-
beta

Figure 7: Comparison of time required for NegaScout, MTD(f), and alpha-beta vs. search
depth

However, as search depth increases, the relative speed of MTD(f) worsens. This is due
to its heavy transposition table dependence, as can be seen in Figure 8, which shows the
performance of NegaScout and MTD(f) with different transposition table sizes. When the
transposition table is too small, MTD(f) takes a heavy performance hit from repeated re-
searching. For 9-ply MTD(f) searches, a size of 222 appears sufficient, while for 10-ply
searches, this is also too small. On the other hand, NegaScout is barely affected by these
changes in transposition table size.

9



0%

100%

200%

300%

400%

500%

2^20 2^22 2^24

R
e

la
ti

ve
 T

im
e

Transposition Table Size

9-ply NegaScout

10-ply NegaScout

9-ply MTD-f

10-ply MTD-f

Figure 8: Time for NegaScout and MTD(f) with 9-ply and 10-ply search depth relative to
alpha-beta vs. transposition table size

5 Bitboards

A bitboard is a data structure that can be used to represent a game board in which each bit
corresponds to one of the squares on the board and indicates whether or not a certain piece
is on that square. For Othello, I use bitboards consisting of two 64-bit bitstrings. One of
the bitstrings represents black’s pieces and another represents white’s pieces, and each bit of
these bitstrings represents one of the 64 squares on the board. The use of bit manipulation
techniques on bitboards allows great speed improvements in certain operations, such as
finding the possible moves and counting frontier squares. Bitboards are also advantageous
in terms of memory use, since they are very compact. The use of bitboard optimizations
made the AI player about 5 times as fast, as shown in Figure 9. This is enough to search
about one ply deeper, a significant advantage.

0

50

100

150

200

250

300

Without Bitboards With Bitboards

Ti
m
e

Figure 9: Comparison of time for alpha-beta search with and without bitboard optimizations

10



6 Time Management

My time management strategy dynamically allocates a certain amount of time to each move
based on the amount of time available and the number of moves remaining in the game. If
a move takes more or less time than allocated, or if the number of moves that my AI player
needs to make changes due to passes, the time allocated to later moves changes accordingly.

Once time is allocated for a move, my AI player searches with iterative deepening as
deeply as possible given the time limit. One simple way to do this is to continue searching
until all of the allocated time has been spent, then aborting the search immediately. However,
this wastes some time spent on the final search iteration. To help avoid aborting a search,
my time management strategy estimates the branching factor, based on the number of moves
available in the leaf nodes of the previous search iteration, and uses this to predict the time
for the next search iteration. If this search is predicted to exceed the allocated time, then
the iterative deepening is ended, thus saving the remaining allocated time for future moves.

It is possible to estimate the time required to search to a given depth without iterative
deepening based on the branching factor and time of earlier searches. However, the branching
factor depends on several factors including the search depth and the game stage, so iterative
deepening allows more accurate time estimation. In addition, iterative deepening helps
increase search efficiency by improving move ordering. Although nodes at the first few levels
may be re-searched several times, the time spent searching at lower depths is much less than
the time spent on the deepest search iteration whenever the branching factor is reasonably
large, so the extra time spent on shallower searches is usually outweighed by the time saved
on deeper searches. During the endgame, the branching factor is low enough that this is
not the case, so my AI player does a full-depth search to the end of the game instead of
the normal iterative deepening search. This endgame search also is much faster per node
because all static evaluation at the terminal nodes is based soley on the number of pieces
each player has.

7 Training

Initially, my static evaluation function’s feature weights were set manually based on hu-
man strategy, and hand-tuned somewhat with a manual hill-climbing process. However, this
process is slow and ineffective. A much better way to set feature weights is to use ma-
chine learning to automatically train the static evaluation function by optimizing the feature
weights.

First, I generated a large set of example positions by playing several thousand games
with a stochastic version of my untrained AI player. In order to generate a diverse training
set that also reflects realistic play, this AI chooses moves with probability based on the
move’s evaluation, with high probability for the best move(s) and decreasing probability for
increasingly suboptimal moves. Later, after training using these examples, I used the trained
AI player to generate additional example positions in a bootstrapping process.

I divided the game into 59 stages, each stage representing positions with a certain number

11



of total pieces from 5 to 63, and trained a separate set of weights for each stage. The training
process starts with the last stage and proceeds through the game stages in reverse order.
For each stage, the set of example positions matching the stage are evaluated with a fairly
deep search. For the last few stages of the game, these evaluations are exact because the
search can reach the end of the game. As earlier stages are trained, the leaf nodes of the
searches are statically evaluated with the weights for a later game stage, which have already
been trained, making the evaluations quite accurate. These evaluations are the target values
for the static evaluation function at the current game stage. To optimize the current stage’s
weights, I used a batch gradient descent method.

7.1 Gradient Descent

Gradient descent is an optimization algorithm that finds a local minimum of a function by
taking steps in the direction of steepest descent, proportional to the negative gradient of the
function. For example, Figure 10 shows a contour plot of the function being optimized with
the sequence of steps taken by the gradient descent algorithm. The steps are orthogonal to
the contours because they are in the direction of the gradient, and they become progressively
smaller as the algorithm converges on the local optimum.

Figure 10: Example of gradient descent

As applied to static evaluation training, the function to minimize is a measure of the
error for a given set of weights, based on the difference between the target value for each
position and the value produced by the static evaluation function with the given weights.
The gradient descent method starts with an arbitrary set of weights and then then repeatedly

12



takes steps in the direction that reduces error most until it reaches convergence at a local
minimum.

A basic form of gradient descent takes steps of size directly proportional to the magnitude
of the gradient, with a fixed constant of proportionality called the learning rate. However,
a learning rate that is too small may result in extremely slow convergence, while a learning
rate that is too large may converge to a poor solution or fail to converge at all. The use of
a dynamic learning rate helps to avoid these problems. In each step, a line search is used to
determine a location along the direction of steepest descent that loosely minimizes the error.

To illustrate the benefits of a dynamic learning rate, I compared the performance of
training with the line search method and with two fixed learning rates. Training with a
small fixed learning rate of 0.003 converged to almost the same solutions as the method with
a line search, but in about four times as many steps. Although using a line search requires
more time per step, the line search method still completed training in about half as much
time. On the other hand, a method with a slightly larger fixed learning rate of 0.005 failed
to converge when training weights for the last stages of the game. As the weights for all
earlier stages of the game depend on these, the training results are all highly suboptimal.
Figure 11 shows the error at each of the first few steps in the training of the last game stage
(63 total pieces) with these fixed learning rates. As we can see, in the training with learning
rate 0.005, the error grows exponentially. To see why, we plot the value for one weight at
each of the first few steps in Figure 12. After a few steps, the value for this weight began
oscillating between positive and negative values with exponentially growing magnitude. The
other weights behaved similarly.

0
200
400

600
800

1000

1200

0 20 40 60 80 100

Er
ro
r

Step

(a) Learning rate 0.003

0E+00

2E+05

4E+05

6E+05

8E+05

0 5 10 15

Er
ro
r

Step

(b) Learning rate 0.005

Figure 11: Comparison of error vs. step with two fixed learning rates

7.2 Overfitting and Cross-Validation

The goal of training is to not only have the static evaluation function fit the example positions
well, but to generalize this learning to fit other positions well. However, if a game results in
positions unlike the training examples, the fit may be poor. This is especially problematic

13



-500

-300

-100

100

300

500

0 5 10 15

W
e
ig
h
t

Step

Figure 12: Value of weight for corner feature vs. step with learning rate 0.005

when the number of examples is too small, which can result in overfitting to the examples
that actually worsens performance on general positions.

To avoid overfitting, the example positions are partitioned into a training set and a
validation set. The training is done with the examples in the training set only, and after each
step in the training, performance is evaluated on the validation set. If this performance stops
improving, even if performance on the training set is still decreasing, training is stopped.
This early stopping method is a simple and effective way to prevent overfitting.

7.3 Training Results

Figure 13 shows the trained weights for some of the more important features over each game
stage. We can see that corners and adjacent squares are extremely important, especially
early in the game, while moves become increasingly important near the end of the game.
Frontier squares are consistently weighted slightly negatively.

8 Referee

Another major part of this project was the development of an Othello referee program to
run the game. The referee acts as the interface between two players playing a game. The
referee supports AI player programs written in multiple programming languages as well as
human players. It keeps track of the game state, enforces rules and time limits, and handles
scoring. The referee has a graphical user interface that displays the board, animates the
players’ moves, and allows a human to play easily by clicking on the board. The referee
is highly customizable and supports a number of additional features, such as tournaments
between several players and automatic statistical testing to determine whether one player
plays significantly better than another.

14



1000

-3000

-2000

-1000

0

1000

2000

3000

4000

5 15 25 35 45 55

Game Stage

Corners C-squares X-squares Moves Frontier Squares

(a) Zoomed-out view of largest weights

-3000

-200

-100

0

100

200

300

400

500

600

5 15 25 35 45 55

Game Stage

Moves Frontier Squares

(b) Zoomed-in view of smaller weights

Figure 13: Trained weights for selected features over each game stage

15



9 Conclusions

I implemented and compared several Othello programs using various static evaluation func-
tions, search algorithms, and data structures. Search improvements such as transposition
tables and bitboards greatly improve performance, and efficient search algorithms such as
NegaScout and MTD(f) are much faster than the basic alpha-beta search algorithm. I found
that MTD(f) outperformed the other search algorithms I tested. The use of machine learning
to optimize the static evaluation function was successful in improving the static evaluation’s
accuracy, resulting in better play.

My best AI players were fairly strong, able to easily defeat me and other amateur human
players even with extremely small time limits. However, they were not nearly as strong as
Othello programs such as Michael Buro’s Logistello [6]. There are many other AI techniques
that could be explored in future research.

10 Future Research

Selective search algorithms, such as ProbCut [2] and Multi-ProbCut [4] can further enhance
game-tree search by pruning parts of the game tree that probably will not affect the overall
minimax value. This allows the player to search much deeper in the relevant parts of the
game tree.

Opening books [5] allow much better and faster play in the early game by storing previ-
ously computed information about early game board states.

Another potential area of investigation is parallelization. Splitting up searches between
several processors can greatly increase the search speed.

Traditionally, the static evaluation function is based on human knowledge about the
game. In Othello, static evaluation is usually based on features related to human goals, such
as mobility, stability, and parity. However, using pattern-based features as discussed in [3]
can improve static evaluation.

There are several machine learning techniques that can be applied to the training of the
static evaluation function. Among the algorithms I investigated but did not implement are
genetic algorithms, particle swarm optimization, and artificial neural networks.

There are many other machine learning methods that can be used to improve the quality
and speed of an AI player based on experience. For example, [8] describes the use of an ex-
perience base to augment a non-learning Othello program, and [1] describes a chess program
that learns as it plays games using the TDLeaf(λ) algorithm. Another interesting idea is to
learn a model of an opponent’s strategy and incorporate that into the minimax search [7].

16



References

[1] J. Baxter, A. Tridgell, and L. Weaver. Experiments in parameter learning using temporal
differences. International Computer Chess Association Journal, 21(2):84–99, 1998.

[2] M. Buro. ProbCut: An effective selective extension of the alpha-beta algorithm. Inter-
national Computer Chess Association Journal, 18(2):71–76, 1995.

[3] M. Buro. An evaluation function for othello based on statistics. Technical Report 31,
NEC Research Institute, 1997.

[4] M. Buro. Experiments with Multi-ProbCut and a new high-quality evaluation function
for Othello. In H. J. van den Herik and H. Iida, editors, Games in AI Research, pages
77–96. Universiteit Maastricht, 2000.

[5] M. Buro. Toward opening book learning. In J. Fürnkranz and M. Kubat, editors,
Machines that Learn to Play Games, chapter 4, pages 81–89. Nova Science Publishers,
Huntington, NY, 2001.

[6] M. Buro. The evolution of strong Othello programs. In Proceedings of the International
Workshop on Entertainment computing (IWEC-02), Makuhari, Japan, 2002.

[7] D. Carmel and S. Markovitch. Learning models of opponent’s strategy in game playing.
Technical Report CIS #9305, Centre for Intelligent Systems, Technion - Israel Inst.
Technology, Haifa 32000 Israel, Jan. 1993.

[8] K. A. DeJong and A. C. Shultz. Using experience-based learning in game-playing. In
Proceedings of the 5th International Conference on Machine Learning, pages 284–290,
1988.

[9] T. A. Marsland and M. S. Campbell. Parallel search of strongly ordered game trees.
ACM Computing Survey, 14(4):533–551, Dec. 1982.

[10] A. Plaat, J. Schaeffer, W. Pijls, and A. de Bruin. A new paradigm for minimax search.
Research Note EUR-CS-95-03, Erasmus University Rotterdam, Rotterdam, Nether-
lands, 1995.

[11] A. Reinefeld. An improvement of the scout tree search algorithm. ICCA Journal,
6(4):4–14, 1983.

[12] A. L. Zobrist. A new hashing method with application for game playing. Technical
Report 88, Univ. of Wisconsin, 1970.

17


