
Applications of Artificial Intelligence and
Machine Learning in Othello

Jack Chen
TJHSST Computer Systems Lab 2009-2010

Abstract

This project explores Artificial Intelligence techniques in the
board game Othello. Several Othello-playing programs were
implemented and compared. The performance of minimax
search algorithms, including alpha-beta, NegaScout and
MTD(f), and of other search improvements such as
transposition tables, was analyzed. In addition, the use of
machine learning to enable AI players to improve play
automatically through training was investigated.

Introduction and Background

Othello (also known as Reversi) is a two-player board game
and abstract strategy game, like chess and checkers. I chose
to work with Othello because it is sufficiently complex to allow
significant exploration of advanced AI techniques, but has a
simple set of rules compared to more complex games like
chess. It has a moderate branching factor, larger than
checkers and smaller than chess, for example, which makes
advanced search techniques important without requiring a
great deal of computational power for strong play. Although
my AI programs are implemented to play Othello, most of the
algorithms, data structures, and techniques I have
investigated are designed for abstract strategy games in
general instead of Othello specifically, and many machine
learning algorithms are widely applicable to problems other
than games.

The basic goal of an AI player is to consider the possible
moves from the current game state, evaluate the position
resulting from each move, and choose the one that appears
best. One major component of an AI player is the static
evaluation function, which heuristically estimates the value of
a position without exploring moves. This value indicates
which player has the advantage and how large that
advantage is. A second major component is the search
algorithm, which more accurately evaluates a state by
looking ahead at potential moves.

Search Algorithms

The minimax search algorithm is the basic algorithm to
search the game tree. Minimax recursively evaluates a
position by taking the best of the values for each child
position. Alpha-beta pruning is an extremely important
improvement to minimax that greatly reduces the number of
nodes in the game tree that must be searched. As shown in
the figure below, alpha-beta is far faster than minimax,
especially at high search depth.

NegaScout and MTD(f) are enhancements of alpha-beta that
use null-window searches, which result in many more cutoffs
than wide window alpha-beta searches. Null-window
searches provide only a bound on the minimax value, so
repeated re-searches may be necessary to find the true
value. The chart below compares the performance of
NegaScout, MTD(f), and alpha-beta.

Training

Initially, my static evaluation function's feature weights
were set manually based on human strategy, and hand-
tuned somewhat with a manual hill-climbing process.
However, this process is slow and ineffective. A much
better way to set feature weights is to use machine
learning to automatically train the static evaluation function
by optimizing the feature weights.

I divided the game into 59 stages, each stage representing
positions with a certain number of total pieces from 5 to 63,
and trained a separate set of weights for each stage with a
gradient descent method.

The trained weights for some of the more important
features over each game stage are shown below. The
corners and adjacent squares are extremely important,
especially early in the game, while moves become
increasingly important near the end of the game. Frontier
squares are consistently weighted slightly negatively.

