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Abstract

This project explores Artificial Intelligence techniques in the 
board game Othello. Several Othello-playing programs were 
implemented and compared. The performance of minimax 
search algorithms, including alpha-beta, NegaScout and 
MTD(f), and of other search improvements such as 
transposition tables, was analyzed. In addition, the use of 
machine learning to enable AI players to improve play 
automatically through training was investigated.

Introduction and Background

Othello (also known as Reversi) is a two-player board game 
and abstract strategy game, like chess and checkers. I chose 
to work with Othello because it is sufficiently complex to allow 
significant exploration of advanced AI techniques, but has a 
simple set of rules compared to more complex games like 
chess. It has a moderate branching factor, larger than 
checkers and smaller than chess, for example, which makes 
advanced search techniques important without requiring a 
great deal of computational power for strong play. Although 
my AI programs are implemented to play Othello, most of the 
algorithms, data structures, and techniques I have 
investigated are designed for abstract strategy games in 
general instead of Othello specifically, and many machine 
learning algorithms are widely applicable to problems other 
than games.

The basic goal of an AI player is to consider the possible 
moves from the current game state, evaluate the position 
resulting from each move, and choose the one that appears 
best. One major component of an AI player is the static 
evaluation function, which heuristically estimates the value of 
a position without exploring moves. This value indicates 
which player has the advantage and how large that 
advantage is. A second major component is the search 
algorithm, which more accurately evaluates a state by 
looking ahead at potential moves.

Search Algorithms

The minimax search algorithm is the basic algorithm to 
search the game tree. Minimax recursively evaluates a 
position by taking the best of the values for each child 
position. Alpha-beta pruning is an extremely important 
improvement to minimax that greatly reduces the number of 
nodes in the game tree that must be searched. As shown in 
the figure below, alpha-beta is far faster than minimax, 
especially at high search depth.

NegaScout and MTD(f) are enhancements of alpha-beta that 
use null-window searches, which result in many more cutoffs 
than wide window alpha-beta searches. Null-window 
searches provide only a bound on the minimax value, so 
repeated re-searches may be necessary to find the true 
value.  The chart below compares the performance of 
NegaScout, MTD(f), and alpha-beta.

Training

Initially, my static evaluation function's feature weights 
were set manually based on human strategy, and hand-
tuned somewhat with a manual hill-climbing process. 
However, this process is slow and ineffective. A much 
better way to set feature weights is to use machine 
learning to automatically train the static evaluation function 
by optimizing the feature weights. 

I divided the game into 59 stages, each stage representing 
positions with a certain number of total pieces from 5 to 63, 
and trained a separate set of weights for each stage with a 
gradient descent method.

The trained weights for some of the more important 
features over each game stage are shown below. The 
corners and adjacent squares are extremely important, 
especially early in the game, while moves become 
increasingly important near the end of the game. Frontier 
squares are consistently weighted slightly negatively.


