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Abstract

This project explores Artificial Intelligence techniques in the 

board game Othello. Several Othello-playing programs were 

implemented and compared. The performance of minimax

search algorithms, including alpha-beta, NegaScout and 

MTD(f), and of other search improvements such as 

transposition tables, was analyzed. In addition, the use of 

machine learning to enable AI players to improve play 

automatically through training was investigated.



Static Position Evaluation

 Heuristically evaluate position without exploring moves

 Useful features:

 Piece differential

 Corners and adjacent squares

 Mobility

 Parity

 Game stages



Minimax



Minimax Performance
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Alpha-Beta Pruning



Alpha-Beta Performance
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Transpositions



Transposition Table

 Cache information about positions

 Avoid re-searching

 Improve move ordering



Transposition Table Performance
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NegaScout

 More efficient than alpha-beta

 Null-window search

 Principal variation search

 Importance of move ordering



NegaScout Performance
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MTD(f)

 More efficient than both alpha-beta and NegaScout

 Only null-window searches

 Heavy reliance on transposition table

 Iterative deepening for better “first guess”



Bitboards

 Store boards as bitstrings

 Speed improvements

 Compactness
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Training Static Position Evaluation

 Improve static position evaluation function automatically

 Optimize feature weights with machine learning

 Train separate set of weights for each stage



Gradient Descent



Training Results
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Referee

 Program to run games

 Interface between AI programs

 Supports programs in multiple languages and humans

 Displays board on GUI



Future Research

 Selective search

 Opening book

 Parallelization

 Simple evaluation features

 Artificial neural networks

 Other machine learning methods


