
Jack Chen

TJHSST Computer Systems Lab 2009-2010

Applications of Artificial Intelligence 

and Machine Learning in Othello



Abstract

This project explores Artificial Intelligence techniques in the 

board game Othello. Several Othello-playing programs were 

implemented and compared. The performance of minimax

search algorithms, including alpha-beta, NegaScout and 

MTD(f), and of other search improvements such as 

transposition tables, was analyzed. In addition, the use of 

machine learning to enable AI players to improve play 

automatically through training was investigated.



Static Position Evaluation

 Heuristically evaluate position without exploring moves

 Useful features:

 Piece differential

 Corners and adjacent squares

 Mobility

 Parity

 Game stages



Minimax



Minimax Performance

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8

T
im

e

Search Depth

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8
T

im
e

Search Depth



Alpha-Beta Pruning



Alpha-Beta Performance

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

T
im

e

Search Depth

Minimax Alpha-Beta

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8
T

im
e

Search Depth

Minimax Alpha-Beta



Transpositions



Transposition Table

 Cache information about positions

 Avoid re-searching

 Improve move ordering



Transposition Table Performance

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

4 5 6 7 8

T
im

e

Search Depth

With Memory

Without Memory



NegaScout

 More efficient than alpha-beta

 Null-window search

 Principal variation search

 Importance of move ordering



NegaScout Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4 5 6 7 8 9

T
im

e

Search Depth

Alpha-Beta NegaScout

0.80

1.00

1.20

1.40

1.60

1.80

2.00

4 5 6 7 8 9
T

im
e

 R
at

io
 (

A
lp

h
aB

e
ta

/
 N

eg
aS

co
u

t)

Search Depth



MTD(f)

 More efficient than both alpha-beta and NegaScout

 Only null-window searches

 Heavy reliance on transposition table

 Iterative deepening for better “first guess”



Bitboards

 Store boards as bitstrings

 Speed improvements

 Compactness

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Without 
Bitboards

With 
Bitboards

T
im

e



Training Static Position Evaluation

 Improve static position evaluation function automatically

 Optimize feature weights with machine learning

 Train separate set of weights for each stage



Gradient Descent



Training Results

-3000

-2000

-1000

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70

Corners C-squares X-squares Moves Frontier Squares



Referee

 Program to run games

 Interface between AI programs

 Supports programs in multiple languages and humans

 Displays board on GUI



Future Research

 Selective search

 Opening book

 Parallelization

 Simple evaluation features

 Artificial neural networks

 Other machine learning methods


