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Abstract

This project explores Artificial Intelligence techniques in the 

board game Othello. Several Othello-playing programs were 

implemented and compared. The performance of minimax

search algorithms, including alpha-beta, NegaScout and 

MTD(f), and of other search improvements such as 

transposition tables, was analyzed. In addition, the use of 

machine learning to enable AI players to improve play 

automatically through training was investigated.



Static Position Evaluation

 Heuristically evaluate position without exploring moves

 Useful features:

 Piece differential

 Corners and adjacent squares

 Mobility

 Parity

 Game stages



Minimax



Minimax Performance
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Alpha-Beta Pruning



Alpha-Beta Performance
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Transpositions



Transposition Table

 Cache information about positions

 Avoid re-searching

 Improve move ordering



Transposition Table Performance
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NegaScout

 More efficient than alpha-beta

 Null-window search

 Principal variation search

 Importance of move ordering



NegaScout Performance
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MTD(f)

 More efficient than both alpha-beta and NegaScout

 Only null-window searches

 Heavy reliance on transposition table

 Iterative deepening for better “first guess”



Bitboards

 Store boards as bitstrings

 Speed improvements

 Compactness
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Training Static Position Evaluation

 Improve static position evaluation function automatically

 Optimize feature weights with machine learning

 Train separate set of weights for each stage



Gradient Descent



Training Results
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Referee

 Program to run games

 Interface between AI programs

 Supports programs in multiple languages and humans

 Displays board on GUI



Future Research

 Selective search

 Opening book

 Parallelization

 Simple evaluation features

 Artificial neural networks

 Other machine learning methods


