
Jack Chen

TJHSST Computer Systems Lab 2009-2010

Applications of Artificial Intelligence 

and Machine Learning in Othello



Abstract

This project explores Artificial Intelligence techniques in the 

board game Othello. Several Othello-playing programs were 

implemented and compared. The performance of minimax

search algorithms, including alpha-beta, NegaScout and 

MTD(f), and of other search improvements such as 

transposition tables, was analyzed. In addition, the use of 

machine learning to enable AI players to improve play 

automatically through training was investigated.



Static Position Evaluation

 Heuristically evaluate position without exploring moves

 Useful features:

 Piece differential

 Corners and adjacent squares

 Mobility

 Parity

 Game stages



Minimax



Minimax Performance

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8

T
im

e

Search Depth

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8
T

im
e

Search Depth



Alpha-Beta Pruning



Alpha-Beta Performance

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

T
im

e

Search Depth

Minimax Alpha-Beta

0.001

0.01

0.1

1

10

100

1000

10000

2 3 4 5 6 7 8
T

im
e

Search Depth

Minimax Alpha-Beta



Transpositions



Transposition Table

 Cache information about positions

 Avoid re-searching

 Improve move ordering



Transposition Table Performance

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

4 5 6 7 8

T
im

e

Search Depth

With Memory

Without Memory



NegaScout

 More efficient than alpha-beta

 Null-window search

 Principal variation search

 Importance of move ordering



NegaScout Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4 5 6 7 8 9

T
im

e

Search Depth

Alpha-Beta NegaScout

0.80

1.00

1.20

1.40

1.60

1.80

2.00

4 5 6 7 8 9
T

im
e

 R
at

io
 (

A
lp

h
aB

e
ta

/
 N

eg
aS

co
u

t)

Search Depth



MTD(f)

 More efficient than both alpha-beta and NegaScout

 Only null-window searches

 Heavy reliance on transposition table

 Iterative deepening for better “first guess”



Bitboards

 Store boards as bitstrings

 Speed improvements

 Compactness

0.00

50.00

100.00

150.00

200.00

250.00

300.00

Without 
Bitboards

With 
Bitboards

T
im

e



Training Static Position Evaluation

 Improve static position evaluation function automatically

 Optimize feature weights with machine learning

 Train separate set of weights for each stage



Gradient Descent



Training Results

-3000

-2000

-1000

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70

Corners C-squares X-squares Moves Frontier Squares



Referee

 Program to run games

 Interface between AI programs

 Supports programs in multiple languages and humans

 Displays board on GUI



Future Research

 Selective search

 Opening book

 Parallelization

 Simple evaluation features

 Artificial neural networks

 Other machine learning methods


