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Abstract

Scripting languages have increased greatly in popularity in recent years with the
growing power of computers. The trade off of runtime and programmer time is in-
creasing favoring using more runtime. However, most current scripting languages are
imperative. A language is developed which is primarily functional in style. The lan-
guage has novel features which allow the base interpreter to be small in size, will the
lack of features such as eval allow the programs to be optimized easily.

1 Introduction

The purpose of my project is to develop a functional style programming language. This
include both the language definition and a sample implementation. The language is similar
to Lisp, but contains features to make it friendlier to imperative programmers. The initial
version will be interpreted, but I expect to eventually at least partially compile code. The
first interpreter has been written in Python, but the final implementation will be in C for
speed. I also plan to include some optimization so that the language is not too slow. This
can be everything from simple things such as constant propagation to complex things such
as an optimizing G-code system.

One goal is to make the interpreter as small as possible, allowing the language to easily
be embedded in other programs. This will allow my language to be used both on its own,
and embedded as a scripting language like Python. Another goal is to create a language that
allows both functional and imperative styles in the same language. Some of these features
are similar to Lisp and Javascript, such as a definite execution order and allowance of local
variables. I will also implement control structures such as while and foreach.
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2 Background

There have been numerous functional languages over the years. The heaviest influences are
from Lisp. Lisp has a definite execution order, and has support for assignable local variables.
Lisp is very complex, however, and the interpreter is very large. It also has a complex and
diversified family of languages, which makes it quite difficult to learn ’Lisp’, rather than
Scheme or Common Lisp or one of it’s derivatives. Further, Lisp has a very large standard
library, which makes it difficult to port cleanly. My language would be focused on simplicity
and speed, rather than on supporting every possible feature. This makes it easy to port.

Haskell shares more of a syntactic representation with my language. It however, is com-
pletely functional, which means no variable assignments. It is also lazy, which means com-
putation is deferred until the last possible moment. Thus things like function side effects are
not allowed. In languages like C++, sometimes expressions are evaluated simply for their
side effect, like accessing a memory location to bring it into the cache. In Haskell, this is
impossible, as simply accessing something is not enough to force its evaluation. This in turn
forces the programmer into the functional style, which makes some operations, like input
and output, harder. It also requires a shift in thought process to understand. I want to avoid
this as much as possible in my language. By supporting imperative programming, I will ease
more people into the functional style, and give my language a higher chance of success.

Other similar languages focus on having a strong mathematical foundation. My language
is not designed with mathematical elegance in mind, but rather with being a concrete lan-
guage that is useful. Lisp uses the same representation to represent code and data. While
this makes certain kinds of programming easier, it is much more difficult to optimize, because
the original representation must be retained and the optimized version must be recreated
when the code is modified.

Further, these languages tend to provide functions such as eval that allow a string to
be executed as if it were code. While this is useful in producing flexible code, in practice its
uses are extremely limited and can be avoided by proper software engineering.

3 Design

In my language, like other functional languages, a program is executed by evaluating the
main expression. This expression is usually composed of sub-expressions, which are then
composed of sub-expressions, and so on.

A program in this language is encoded using ASCII formatted text, which may be in
a file, on a stream, in a buffer in memory, etc. The program is first divided into tokens.
Then a tree is created from these tokens, which is then executed. The language is sometimes
ambiguous. In these cases, parentheses are required to disambiguate.

This language uses infix notation for most expressions. The exception to this rule is the
control structures, which are denoted with a special initial token and possibly a series of
internal tokens. Thus the type of a given subexpression can be determined solely by it’s first
token. Thus the language can be parsed by a simple recursive descent with backtracking
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Figure 1: The graph after the parser stage. Notice that the let expression holds a list of
assignments (in this case only one). The numbers in parentheses are the node numbers,
which are like pointers to the node.

parser. Operator precedence follows rules much like those of other C-derived languages.
My language uses the . (dot) operator to represent function application. Most similar

languages use whitespace to separate the arguments. By using a separate character, function
application becomes an infix operation, which makes the syntax and parser much simpler.
Almost all operations other than lambda definition, literal list specification, and control
structures are represented as infix expressions. This is far more intuitive than the prefix
notation of Lisp, and matches expressions in almost all imperative languages.

The language has support for the let construct, which allows local definitions, as well
as variables in the imperative style. The language is lazy, which means functions are not
evaluated until the results are needed. The current model only accounts for one level of
”need”, but future iterations will likely include support for ”strong” and ”weak” need. Built
in operators and functions such as +, ->, and reduce would ’strongly’ need their arguments,
while user defined functions would ’weakly’ need their arguments. Closures would only
evaluate themselves when they are strongly needed, but regular expressions would do so
only on weak need. This would cause expressions such as

let

two = {x,y | do y; x; () done}

in

two.(print."x").(print."y")}

to print ”xy” rather than ”yx”. This is what most imperative programmers would expect, as
well as those used to Lisp-like semantics. If the function two had been called on two closures
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instead, then the evaluation of the print statements would have been delayed until the code
had entered the do construct, in which case the output would be ”yx”.

The do/done construct allows code to be executed in a definite order. This is useful for
things such as print statements, and other functions with side effects. The presence of side
effects in functions will be tracked, so that optimizations can be applied to functions which
have no side effects.

Other similar languages focus on having a strong mathematical foundation. My language
is not designed with mathematical elegance in mind, but rather with being a concrete lan-
guage that is useful. Lisp uses the same representation to represent code and data. While
this makes certain kinds of programming easier, it is much more difficult to optimize, because
the original representation must be retained and the optimized version must be recreated
when the code is modified.

4 Implementation

The interpreter is divided into a number of relatively independent sections. The first part
is the lexical analyzer, which turns the sequence of characters into a sequence of tokens. It
does this using a state machine. For each character, it determines whether it can be added to
the existing token. If it can, then it is appended to the token string. Otherwise, the token is
considered complete and it is added to the list of existing tokens. The lexical analyzer keeps
track of line numbers and attaches them to tokens, which allows the parser to report errors
accurately. It also parses the constants (such as numbers) to produce values, and un-escapes
the strings to produce an in memory representation.

The parser is the next stage. The parser turns the linear token stream into the first
revision of the graph that will eventually be executed as the program. The parser has many
lines of code, but as it is a simple recursive descent parser, it is not terribly complex to
understand. In the Python version, techniques were used to make the code smaller, in an
attempt to make it more concise and readable.

The entry function for the recursive descent part of the parser is rootexpr(). This function
first looks for a statement on the input token stream (such as let, if, or do). If one of these is
found, then the code descends into the function for that construct. Such constructs always
begin with a keyword, making them very easy to find. If a keyword is not found, then the
expression must be the beginning of an infix expression. This requirement (keywords first)
makes it easy to parse the language using the simple recursive descent parser. The infix
expressions have a much more complex stack, because they must correctly handle operator
precedence.

After the parser has constructed an in memory graph of the program, the optimizer is
called to transform this graph. Despite it’s name, the optimizer has a larger role than simply
to make the code execute faster. The optimizer is responsible for the transformation of the
graph from a lexical one into one which the executor can use. This involves the removal of
variable names, and the reduction of constructs such as let from their tree representation
into the graph form. It also performs lambda lifting, to allow the code to be compiled into
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a linear instruction stream. A compiler would produce its output at this stage, while an
interpreter would continue on.

The executor is the final stage of program execution. The interpreter is responsible for
walking the graph and performing the instructions found there. The interpreter uses what
is known as normal order reduction to ensure that the program will complete if it will ever
complete. This is used when there is a chain of application nodes in the graph. These nodes
represent a curried function being applied to a series of arguments. The do/done construct
needed its own special case code, to ensure it would execute in order. All of the mathematical
operators are implemented in terms of internal Python operators.

The lambda-lifting operation allows this part of the system to run much faster. Without
lambda lifting, any recursive function would have to duplicate a copy of itself for every invo-
cation, which leads to exponential behavior. With the lifting process, the need to duplicate
any function is eliminated. This leads to much faster performance. It can also open the door
to more aggressive optimizations, and possibly machine code compilation.

The language requires the print statement to output any data. With the implemen-
tation of ordered evaluation, the language does not require monads or other obscure and
complicated constructs to perform something as simple as streamed input and output.

5 Results

The language currently can perform reduction of complex mathematical expressions. It also
has support for a large number of the final operators that are part of the core language. It
can perform let reduction, as well as execute user defined functions. Lists can be traversed
using the head and tail functions. There is support for imperative programming using the
do/done construct. Recursive functions are fully supported through the implementation of
lambda lifting in the optimizer. Both a program that reads in source code from a file, as
well as one that accepts user input from the command line were created. This allows the
language to be used in the traditional file based way, as well as in an interactive manner.

6 Future Work

Future work on my language will include the further development of the core functions.
The system still needs an implementation of weak and strong need, as well as a means on
controlling this programmatically. The standard library needs to be developed, as well as
bindings to common libraries. Example programs demonstrating how the language can be
embedded in other languages would provide a convenient reference for other programmers.
The optimizer can be improved to do things such as constant propagation, tail recursion
optimization, and code compilation.
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