
Implementation of a Functional
Programming Language

Jason Koenig
Computer Systems Lab 2009-2010

Abstract
Scripting languages have increased greatly in

popularity in recent years with the growing power of
computers. The trade off of runtime and programmer
time is increasing favoring using more runtime.
However, most current scripting languages are
imperative. A language is developed which is
primarily functional in style. The language has novel
features which allow the base interpreter to be small
in size, will the lack of features such as eval allow
the programs to be optimized easily.

Introduction
The purpose of my project is to develop a

functional style programming language. The language
is similar to Lisp, but contains features to make it
friendlier to imperative programmers. The initial
version will be interpreted, but I expect to eventually
at least partially compile code.
 One goal is to make the interpreter as small as
possible, allowing the language to easily be
embedded in other programs. This will allow my
language to be used both on its own, and embedded
as a scripting language like Python.

Beyond the implementation, I will also develop a
series of tutorials and example programs that will
assist in learning my new language. This will be
important if my language is to become anything other
than a toy language.

Figure 1. The graph after the parser stage. Notice that the let
expression holds a list of assignments (in this case only one). The
numbers in parentheses are the node numbers, which are like
pointers to the node.

Sample Program
let

X = 5,
Y = 3+X,
Z= {t| t+2}

in
Z.(X+Y) # output is 15

Implementation
The interpreter is divided into a number of

relatively independent sections. The first part is the
lexical analyzer, which turns the sequence of

characters into a sequence of tokens. The parser
turns the linear token stream into the first revision of
the graph. This output is visualized in Figure 1. The
parser hands it's graph to the optimizer. The optimizer
is responsible for the transformation of the graph from
a lexical one into one which the executor can use.
This involves the removal of variable names, and the
reduction of constructs such as let. The executor is
the final stage of program execution. The interpreter
is responsible for walking the graph and performing
the instructions found there. The output of the
program is produced at this step.

Results
The language currently can perform reduction of

complex mathematical expressions. It also has
support for a large number of the final operators that
are part of the core language. It can perform let
reduction, as well as execute simple user defined
functions. There is support for imperative
programming. Recursive functions work properly.
Both a program that reads in source code from a file,
as well as one that accepts user input from the
command line were created.

Design
In my language, like other functional languages, a

program is executed by evaluating the main
expression. This expression is usually composed of
sub-expressions, which are then composed of sub-
expressions, and so on.

Several novel ideas were incorporated, such as
using an explicit character for function application (.)
rather than whitespace. This simplifies the parser
greatly, which was a design goal.

	Slide 1

