Project Description

Student: Jason Koenig

Title: Design and Implementation of a Functional Programming Language

Background:

There have been numerous functional languages over the years. The heaviest influences are from Lisp. Lisp has a definite execution order, and has support for assignable local variables. The design of functional languages has focused on their correctness in an abstract sense, without a focus on actual programming. This gives them an often unapproachable reputation as languages used for research, not as a language used in industry.

Haskell is a completely functional programming language, which means no variable assignments. It is also lazy, which means computation is deferred until the last possible moment. Thus things like function side effects are not allowed.

Other similar languages focus on having a strong mathematical foundation. Lisp uses the same representation to represent code and data. While this makes certain kinds of programming easier, it is much more difficult to optimize, because the original representation must be retained and the optimized version must be recreated when the code is modified.

Python is a language which is very popular for all sorts of uses. The reason for this success is that the language was designed with a focus on making programming easier on the programmer, and not on fighting some obscure performance problem in a finely tuned functional system.

Description:

The purpose of my project is to develop a functional style programming language. This includes both the language definition and a sample implementation. The language is similar to Lisp, but contains features to make it friendlier to imperative programmers. The initial version will be interpreted, but I expect to eventually at least partially compile code. The first interpreter has been written in Python, but the final implementation will be in C for speed. I also plan to include some optimization so that the language is not too slow. This can be everything from simple things such as constant propagation to complex things such as an optimizing G-code system. One goal is to make the interpreter as small as possible, allowing the language to easily

be embedded in other programs. This will allow my language to be used both on its own, and embedded as a scripting language like Python. Another goal is to create a language that allows both functional and imperative styles in the same language. Some of these features are similar to Lisp and Javascript, such as a definite execution order and allowance of local variables. I will also implement control structures such as while and foreach.

 Beyond the implementation, I will also develop a series of tutorials and example programs that will assist in learning my new language. This will be important if my language is to become anything other than a toy language.

The language currently can perform reduction of complex mathematical expressions. It also has support for a large number of the final operators that are part of the core language. It can perform let reduction, as well as execute user defined functions. Lists can be traversed using the head and tail functions. There is support for imperative programming using the do/done construct. Recursive functions are fully supported through the implementation of lambda lifting in the optimizer. Both a program that reads in source code from a file, as well as one that accepts user input from the command line were created. This allows the language to be used in the traditional file based way, as well as in an interactive manner.

