Project Description

Student: Bharat Ponnaluri

Title: Design of Real Time Strategy Game with a Genetic AI

Background:

Currently, the AI's for many video games have algorithms that are composed of combinations of constants and heuristics which are created by programmers. This approach can generate AI that is somewhat intelligent. However, this approach leads to an AI that is poor at pattern recognition and easy to exploit. In chess, computers such as Deep Blue have compensated for this by doing a brute force search and having a complex heuristic evaluation function that evaluates things such as material balance, king safety, and piece mobility. It is especially difficult to generate good AI when there are large numbers of possibilities in due to the complexity of a game. In Civilization 4, the AI often attacks another player by suiciding a large army against a fortified city, which is a result of the current approach to AI design. In Rome Total War, the AI often attacks by simply marching its army straight towards you, which can be easily exploited. Due to the complexity of these games and the randomness of combat, a brute force approach for the AI heuristics does not work. Also, it is difficult to find a good combination of heuristics and constants. Using a genetic algorithm to optimize the AI could potentially work better since the AI will be trained to correctly evaluate potential actions.

Description:

My goal is to have my genetic algorithm create an intelligent AI for a simple real-time strategy game(RTS) game that I have created. In the RTS, you gain money to buy troops based on the number of cities that you have. The goal is to take over all the cities on the map, in a manner similar to how you have to take over all the territories on a map in the board game, Risk.

Currently, I am working on making my genetic algorithm generate a formula for a set of input-output pairs based on polynomials. In a genetic algorithm, you start out with a collection of chromosomes or sets of data that represent potential solutions. On every iteration, the less effective chromosomes are removed, and the good solutions swap data and randomly mutate. Using genetic algorithms is analogous to the process of evolution and natural selection in nature.

Once my genetic algorithm can generate formulas, I will modify it for my game. The inputs will be heuristics based the variables of the game such as the number of cities owned by each player, the number of troops each player has, and what each player is doing. The output will be a number which will correspond to an action that the AI should take.

In order to optimize the AI for my game, I will not have the AI's play against each other since that would take too much time. Also, based on past experiences, there will be bugs in the genetic algorithm which will take a prohibitively long time if I have the AI play against each other. Instead, I will create a set of scenarios for the game and define good/bad actions for each AI. During each iteration of the genetic algorithm, the AI will analyze the scenarios and decide what it should do for each one. If it decides on actions that are defined to be good, it will have a high fitness value. If it decides on actions that are defined to be bad, it will have a low fitness value.

