
Converting Electronic Music to Sheet Music
TJHSST Senior Research Project Paper

Computer Systems Lab 2009-2010

Hugh Smith

June 15, 2010

Abstract

Electronic creation of music has become a
wide-spread hobby or profession. Electron-
ically generated music is when a user inputs
data about a sound into a computer, and it
produces said sound. Even though this is
very widespread, the opposite is not true.
That is, the conversion of raw sound data
into sheet music, or something that defines
the sound, is much less prevalent. Why is
this? It is, of course, very challenging to do.
This project aims to do just that - convert
a piece of digital music (a .WAV file) into
actual sheet music, using the Fourier trans-
form algorithm. Keywords: music, anal-
ysis, fourier, transform, wave, digital, algo-
rithm, wav, sheet, music

1 Introduction

This project will involve reading the audio
data from an electronic audio file in .WAV
format and converting it into another file for-

mat called ABC. The ABC format will be
discussed in more detail later in the paper.
This process will be difficult because convert-
ing music files to basic sound data can be
very complicated. For this, one must use the
Fourier transform algorithm, which converts
a function with a time domain into one with a
frequency domain. This algorithm has many
applications, and it is very useful for this type
of musical analysis.

2 .WAV files

The .WAV file is one way of storing music
digitally. The following figure is an example
of such a file, where time is moving from left
to right and the height of the curve is the
amplitude of the music signal.

1



WAVE files have a specific description for
how they are constructed, like all file formats.
First come the three header ”chunks” (so
called because they are collections of data)
and then the actual sound data itself. First
comes the RIFF Descriptor Chunk:

This is the chunk that describes to the file
reader what exactly the file is. The first field
always has a value of ”RIFF.” RIFF is a pro-
prietary file type developed by Microsoft. It
is used for many formats, including WAVE
and MPEG files. The ”RIFF” tells the reader
that this is a music or video file, and that it
will have the same format as any RIFF-type
file. The next item in the table, the ”chunk
data size,” is simply the total length of the
file, in bits. The last item in the RIFF chunk,
the RIFF type, tells the reader what specific
type of file it is - if it says ”WAVE,” then it
is a sound file, if it says ”MPEG,” then it is
a video file. The next chunk is the format, or
”FMT” chunk.

This chunk describes various constants for
the music file. Besides the sound data it-
self, it’s the most complex part of the WAVE
file, just because of all the sound jargon it
contains. The most important part of this
chunk describes sample characteristics. Sam-
ples are how the WAVE file stores the sound
data. Each sample in the file is a point on the
sinusoidal sound wave, describing the ampli-
tude of the wave at that time. The ”chunk
ID” will always show ”FMT” to indicate that
the file reader has reached the format chunk.
The sample rate is how many samples are
taken per second in the file. A higher num-
ber means a higher quality sound file, but
also a larger file. Significant bits per sample
identifies the storage size of each sample - for
example, eight bits or sixteen bits. Again, a
higher number means a higher-precision sam-
ple, which once again means higher quality.
The final chunk in a WAVE file is the Data
chunk.

The data chunk is the most important part
because it contains the data itself. The
”chunk ID” always says ”data,” just like the
format chunk. The chunk size is the length in
bits of the actual data, which can vary based
on the length of the song and the quality,
as described above. After that, the file goes
right into the data. The data needs to be
read in a binary mode in sets of the signifi-
cant bits per sample specified in the format
chunk.

2



3 ABC Format

ABC notation is a way to represent sheet
music in a text file. The format is simple,
with the letters of the keys corresponding
to their sheet-music symbols. You can add
information such as the title, the arranger,
the performer, and other things to the music.
In addition, there are lots of programs
available for converting this notation to a
PDF document, so it can be actual sheet
music. ABC notation is best for rendering
single-melody songs, so it will be very useful
for my project. The general format of an
ABC file is as the following example:

This creates a sheet music file like so:

ABC format is a well-used format, with many
websites offering versions of their MIDI or
MP3 files in ABC format as well. An example
is The Session (http://thesession.org/). This

website is a collection of Irish traditional
folk music. This is useful, because, most
folk music has one melody. For my project,
these types of songs will be best to test my
program on, as there is a low probability
of getting the song wrong if the program is
actually working.

4 Sound Waves

Sound waves are defined by three things: fre-
quency, amplitude, and phase. Luckily, this
project only requires a close look at the first
one, frequency. The frequency of a wave is
how many ”cycles” it has per second (Hertz).
In a sound wave, each different-toned note
has a different frequency - it is what dis-
tinguishes high-pitch sounds from low-pitch
sounds. This is easy to tell graphically.

The first wave has a lower frequency than
the second. This means, in sound terms,
the second wave has a higher pitch than the
first. Also, both waves have the same ampli-
tude. This means that, no matter the pitch,
they will always sound as loud as one an-
other. Looking at the graphs, the amplitude
is found by seeing how far the waves go above

3



or below the midpoint. The graphical exam-
ple shows that the computer is able to show
this information in an easy-to-understand no-
tation. However, it can also get quite com-
plex. Looking back at the example used in
the .WAV file type section, it is hard to tell
one frequency from another. The file itself
actually describes the progression from mid-
dle C, to D, E, F, and G. It’s part of a C
major scale. Such a simple thing, when be-
ing played, sounds like it would be simple as
well as a sound wave, but as one can see, it
is not.

5 Fourier Transform

To go from these sound waves into actual
notes, a piece of rather complicated math is
required - the Fourier transform. The Fourier
transform, in sound, takes a function in the
time domain, and changes it into a function
in the frequency domain.

f(x) is the function describing the amplitude
of the music in the wave file at time=x. Then,
the Fourier transform defines a function of
frequency, where frequency is denoted by the
Greek letter xi. Since the .WAV file is made
up of discrete samples, we use the Discrete
Fourier Transform:

This can be simplified by substituting the two
summations as R(freq) and I(freq), respec-
tively.

Then, the ”magnitude” of the function would
be described as applying the distance formula
to the R and I:

So, each frequency has a certain magnitude.
These two are shown together in the next
graphs:

Looking at the second graph, there is a se-
quence of peaks at various frequencies. These
represent the base frequency and harmonics
of the note being played. In this case, it is
middle C, so there are peaks at all the Cs
shown in the graph. However, the important
part is the highest peak. That indicates the
”base frequency,” or the original note that
was played. The frequency of the highest
peak is about 261 Hertz - which is the fre-
quency of middle C. Each one of the dots on
the graph represents a sample - although, this

4



is a smaller graph window, and so the ac-
tual number of samples is much larger than
shown. Another example is middle D -

The frequency for middle D is about 290
Hertz, so this one checks out as well. How-
ever, what if the input file is a portion of mid-
dle A playing, and then a portion of middle
C playing?

Here the first problem presents itself. We
have two sets of peaks here, but how is the
program supposed to know that there are two
notes instead of just one? One solution is to
check the raw sound data for a sudden in-
crease in the loudness of the sound, and that
would work in this case. However, not many
songs have notes that are completely stac-
cato. For something like the case of the C
scale presented earlier, there is no clear in-
dicator of where one note stops and another
begins. Dealing with this case, though, it is
relatively easy to check when this happens.
The first part of the solution would involve
finding the peaks of the data. First, take the
absolute value of the raw data, and while the
slope is positive, check whether the slope sud-
denly becomes negative. If it does, that is a
peak, and save that time value. Keep on do-
ing this until the end of the file. For the sec-
ond part, you would go over the peaks, and if
the value of the peak suddenly is higher than

5



the previous one, that is a new note. Di-
vide the array at that place. This also solves
the problem of the chronological order of the
notes. To show this, here is an example of
a two-note file where the two notes overlap
somewhat:

These two notes seem a bit harder to differ-
entiate from one another. Obviously, taking
the Fourier transform of the whole file to-
gether would give unreadable results. How-
ever, what if we split the file into two? The
first part alone would obviously give us the
correct answer, as it is just that note. How-
ever, the second part is a little bit different.
It has part of the first note’s fading in that
part.

In fact, the highest point is the correct an-
swer. This is because the second note is
stronger than the first in the last part taken
alone. Despite the difficulties in recognizing
where the break actually occurs, this seems
like a good method for actually rendering
sheet music.

6 Implementation

The coding implementation of this was some-
what different from the theory. As a .WAV
file is presented in samples, there was no de-
fined function I could integrate to find the
frequency domain. As such, I had to work
with a long list of points. For about a 0.1-
second file, there were about 30,000 samples.
This creates a problem with time, that will
be addressed later on in the paper. There
were two parts to my implementation of the
Fourier transform.

These first calculations convert the original
list of points in the time dimension into two
parts - real and imaginary - in the frequency
dimension. This is based on the definition
of the Fourier Transform as described ear-
lier. Once that calculation is complete, the
magnitude of the frequency function at each
frequency is calculated.

These calculations test each frequency value
in the magnitude equation, also specified in
the Fourier Transform section. Using the fre-
quency as the X axis, and the magnitude as
the Y axis, they make a graph as seen before
in the case of middle C. The base frequency is

6



then calculated by finding the frequency with
the maximum magnitude:

This code, by using a simple max search algo-
rithm, finds the highest amplitude value and
saves its index in the array. Next, another
simple algorithm is used to determine which
note the frequency is closest to. This can
give a wrong answer sometimes, because due
to the sampling error based on the bits per
sample and sample rate, the samples can ex-
press a lower-quality curve.

The notes array used in this algorithm is a
list of 100 frequencies of 100 notes. This is
actually more notes than are on a piano. The
program subtracts each of these from the fre-
quency of the max amplitude, and finds the
one it is closest to. Then, taking the fre-
quency of the note, the program substitutes
the appropriate letter designation:

Each note was hard-coded in, as was the
array of the different frequencies. The fre-
quency differences between the notes become
greater as the pitch of the note becomes
higher, and there seems to be no set factor
to multiply by. As such, it was necesary to
hard-code, and it is easier to identify higher
pitch notes than lower pitch notes.

7 Time Issues

In the program being used to generate test
frequencies, Audacity, the default setting for
saving .WAV files is to use a 16-bit sample
size. This caused problems in this project,
because there is no good way to read in 16-
bits into an array of any useful type. 8 bits
is used for a character data type value, so
that is what was used. Even if there were a
good container of that size, however, that is
twice as much data being read. If this were
not enough, the Fourier transform involves a
twice-nested for loop, which takes the run-
ning time to at least O(N2) (an amount of
time proportional to the number of elements
being processed squared). After that, there
is another for loop, which elevates the run
time even higher. With so much data, this

7



takes a long time even with a one-second file.
The time required to fully run my program
for a normal-length file does not bear think-
ing about, to say nothing of the problems
resulting with hitting the max integer value
limit. However, these problems were solved
by creating samples of extremely fast-playing
melodies and notes, and setting Audacity to
render the .WAV with eight bits per sample
instead of sixteen.

8 Conclusion

This project successfully implemented the
Fourier Transform to identify single notes.
This procedure also works well for pure stac-
cato music, in which notes do not overlap in
time. For multiple notes, the Fourier Trans-
form process will identify the various notes,
but does not indicate which order the notes
come in. To determine that, the .WAV file
data must be used to find out when in time
a new note begins. The Fourier Transform
process would then be applied sequentially,
each time using that portion of the .WAV file
between where the current note starts and
the next note starts. These start times are
easy to determine for staccato music. But
when notes overlap, it becomes more difficult.
A possible procedure to do this was identi-
fied. A lot more could be done to extend this
project. In the current version, it uses the
Discrete Fourier Transform, which certainly
gets the job done. However, it would be faster
(and probably easier in the long run) to in-
stead implement the Fast Fourier Transform,
another algorithm that uses less samples and

finds an answer more quickly. Another thing
that needs to be implemented was the actual
conversion to ABC format. The current pro-
gram simply prints out the note it has decided
on, and also three text files detailing the fre-
quency, magnitude, and phase of each sam-
ple. Future implementations of this project
could also figure out the relative lengths of
each note, and use those to find the time
signature and which length of note each is
- quarter note, half note, sixteenth note, etc.

9 Bibliography

http://www.sonicspot.com/guide/wavefiles.html
https://ccrma.stanford.edu/courses/422/projects/WaveFormat/
http://thesession.org/ Elements of
Computer Music (F. Richard Moore)
http://www.dspdimension.com/admin/dft-
a-pied/

8


